Исследование эмпирических оценок параметров гиббсовского распределения, полученных методом максимального правдоподобия
Розглянуто умови конзистентності і асимптотичної нормальності оцінки максимальної правдоподібності для марковських послідовностей з гіббсовським розподілом. Сформульовано і доведено теореми, які дозволяють апроксимувати критеріальну функцію марковського процесу з єдиною точкою максимуму її емпірично...
Saved in:
| Published in: | Кибернетика и системный анализ |
|---|---|
| Date: | 2013 |
| Main Author: | |
| Format: | Article |
| Language: | Russian |
| Published: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2013
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/86227 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Исследование эмпирических оценок параметров гиббсовского распределения, полученных методом максимального правдоподобия / А.С. Самосёнок // Кибернетика и системный анализ. — 2013. — Т. 49, № 2. — С. 178-187. — Бібліогр.: 6 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | Розглянуто умови конзистентності і асимптотичної нормальності оцінки максимальної правдоподібності для марковських послідовностей з гіббсовським розподілом. Сформульовано і доведено теореми, які дозволяють апроксимувати критеріальну функцію марковського процесу з єдиною точкою максимуму її емпіричною оцінкою. Розглянуті теореми є ефективним інструментом для дослідження збіжності оцінок невідомих параметрів до їх істинних значень.
The paper examines the properties of consistency and asymptotic normality of maximum likelihood estimate for Markov sequences with Gibbs distribution. Theorems that allow approximating the criterion function of the Markov process with a single point of minimum by its empirical estimate are formulated and proved. The results can be applied to analyze the convergence of unknown parameters to their true values.
|
|---|---|
| ISSN: | 0023-1274 |