Оцінка похибок розв’язання інтегральних рівнянь Вольтерри ІІ роду засобами інтегральних нерівностей
Розглянуто можливості застосування інтегральних нерівностей при отриманні конструктивних виразів для оцінки похибок розв’язання інтегральних рівнянь Вольтерри другого роду. Метод ілюструється на прикладі інтегральних рівнянь з виродженими ядрами....
Gespeichert in:
| Datum: | 2013 |
|---|---|
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | Ukrainian |
| Veröffentlicht: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2013
|
| Schriftenreihe: | Математичне та комп'ютерне моделювання. Серія: Технічні науки |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/86397 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Оцінка похибок розв’язання інтегральних рівнянь Вольтерри ІІ роду засобами інтегральних нерівностей / Д.А. Верлань, К.С. Чевська // Математичне та комп'ютерне моделювання. Серія: Технічні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2013. — Вип. 9. — С. 23-33. — Бібліогр.: 4 назв. — укр. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-86397 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-863972025-02-09T14:50:25Z Оцінка похибок розв’язання інтегральних рівнянь Вольтерри ІІ роду засобами інтегральних нерівностей Верлань, Д.А. Чевська, К.С. Розглянуто можливості застосування інтегральних нерівностей при отриманні конструктивних виразів для оцінки похибок розв’язання інтегральних рівнянь Вольтерри другого роду. Метод ілюструється на прикладі інтегральних рівнянь з виродженими ядрами. Possible applications of integral inequalities in obtaining of meaningful expressions to evaluate errors solutions of Volterra integral equations II kind. The method is considered on the example of integral equations with separable kernels. 2013 Article Оцінка похибок розв’язання інтегральних рівнянь Вольтерри ІІ роду засобами інтегральних нерівностей / Д.А. Верлань, К.С. Чевська // Математичне та комп'ютерне моделювання. Серія: Технічні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2013. — Вип. 9. — С. 23-33. — Бібліогр.: 4 назв. — укр. 2308-5916 https://nasplib.isofts.kiev.ua/handle/123456789/86397 519.6 uk Математичне та комп'ютерне моделювання. Серія: Технічні науки application/pdf Інститут кібернетики ім. В.М. Глушкова НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
Ukrainian |
| description |
Розглянуто можливості застосування інтегральних нерівностей при отриманні конструктивних виразів для оцінки похибок розв’язання інтегральних рівнянь Вольтерри другого роду. Метод ілюструється на прикладі інтегральних рівнянь з виродженими ядрами. |
| format |
Article |
| author |
Верлань, Д.А. Чевська, К.С. |
| spellingShingle |
Верлань, Д.А. Чевська, К.С. Оцінка похибок розв’язання інтегральних рівнянь Вольтерри ІІ роду засобами інтегральних нерівностей Математичне та комп'ютерне моделювання. Серія: Технічні науки |
| author_facet |
Верлань, Д.А. Чевська, К.С. |
| author_sort |
Верлань, Д.А. |
| title |
Оцінка похибок розв’язання інтегральних рівнянь Вольтерри ІІ роду засобами інтегральних нерівностей |
| title_short |
Оцінка похибок розв’язання інтегральних рівнянь Вольтерри ІІ роду засобами інтегральних нерівностей |
| title_full |
Оцінка похибок розв’язання інтегральних рівнянь Вольтерри ІІ роду засобами інтегральних нерівностей |
| title_fullStr |
Оцінка похибок розв’язання інтегральних рівнянь Вольтерри ІІ роду засобами інтегральних нерівностей |
| title_full_unstemmed |
Оцінка похибок розв’язання інтегральних рівнянь Вольтерри ІІ роду засобами інтегральних нерівностей |
| title_sort |
оцінка похибок розв’язання інтегральних рівнянь вольтерри іі роду засобами інтегральних нерівностей |
| publisher |
Інститут кібернетики ім. В.М. Глушкова НАН України |
| publishDate |
2013 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/86397 |
| citation_txt |
Оцінка похибок розв’язання інтегральних рівнянь Вольтерри ІІ роду засобами інтегральних нерівностей / Д.А. Верлань, К.С. Чевська // Математичне та комп'ютерне моделювання. Серія: Технічні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2013. — Вип. 9. — С. 23-33. — Бібліогр.: 4 назв. — укр. |
| series |
Математичне та комп'ютерне моделювання. Серія: Технічні науки |
| work_keys_str_mv |
AT verlanʹda ocínkapohibokrozvâzannâíntegralʹnihrívnânʹvolʹterriííroduzasobamiíntegralʹnihnerívnostej AT čevsʹkaks ocínkapohibokrozvâzannâíntegralʹnihrívnânʹvolʹterriííroduzasobamiíntegralʹnihnerívnostej |
| first_indexed |
2025-11-27T01:21:22Z |
| last_indexed |
2025-11-27T01:21:22Z |
| _version_ |
1849904581614501888 |
| fulltext |
Серія: Технічні науки. Випуск 9
23
4. А.с.1001298 (СССР). Самоконтролирующаяся система электропитания
постоянного напряжения / А. Ф. Верлань, А. И. Гудименко, А. И. Криво-
носов, И. Д. Колодеев, В. С. Коновалюк, П. Т. Передерий, В. Н. Скач-
ко. — Опубл. в Б.И., 1983. — №8.
5. Верлань А. А. Об одном способе построения системы контроля вторич-
ных источников электропитания / А. А. Верлань // Математичне та ком-
п'ютерне моделювання. Серія: Техн. науки : зб. наук. праць. — Кам’я-
нець-Подільський : Кам’янець-Подільський національний університет
імені Івана Огієнка, 2013. — Вип. 8. — С. 22–31.
Actual issues of organizing the structure of the constant voltage power
supply (SPS) with protection and automated control systems (ACS) are
considered, one of possible block schematic diagram for the self-
controlling secondary power supply is proposed, the components and func-
tionality of the diagram blocks are considered.
Key words: automated control systems, secondary power supply.
Отримано: 11.11.2013
УДК 519.6
Д. А. Верлань*, аспірант,
К. С. Чевська**, асистент
*Київський національний університет
імені Тараса Шевченка, м. Київ,
**Кам’янець-Подільський національний університет
імені Івана Огієнка, м. Кам’янець-Подільський
ОЦІНКА ПОХИБОК РОЗВ’ЯЗАННЯ ІНТЕГРАЛЬНИХ
РІВНЯНЬ ВОЛЬТЕРРИ ІІ РОДУ ЗАСОБАМИ
ІНТЕГРАЛЬНИХ НЕРІВНОСТЕЙ
Розглянуто можливості застосування інтегральних нерів-
ностей при отриманні конструктивних виразів для оцінки по-
хибок розв’язання інтегральних рівнянь Вольтерри другого
роду. Метод ілюструється на прикладі інтегральних рівнянь з
виродженими ядрами.
Ключові слова: інтегральні рівняння, інтегральні нерів-
ності.
Вступ. Задача аналізу похибок наближеного розв’язання інтег-
ральних рівнянь розглядалася в цілому ряді робіт, наприклад [1–3],
однак вона не втратила своєї важливості у зв’язку з усе більш широ-
ким застосуванням комп’ютерних технологій і великою різноманітні-
стю джерел і характеристик первинних похибок.
© Д. А. Верлань, К. С. Чевська, 2013
Математичне та комп’ютерне моделювання
24
Необхідним етапом в аналізі похибок розв’язання, зазвичай, є
отримання рівнянь, з яких вони знаходяться. У цій статті розглядають-
ся питання знаходження рівнянь для похибок розв’язання, а також ін-
тегральних нерівностей, що з них випливають, для деяких типів рів-
нянь Вольтерри другого роду, в тому числі лінійного рівняння
0
( ) ( ) ( , ) ( )
x
y x f x K x s y s ds , (1)
де y(x) — шукана функція; ( , )K x s — ядро; ( )f x — права частина.
Основна частина. Будемо орієнтуватися на використанні отри-
маних у роботі [4] інтегральних оцінок функцій для оцінки похибок
розв’язання рівнянь, що розглядаються нижче.
1. Якщо ,K x s a x b x , тобто маємо найпростіший випадок
виродженого ядра, то вихідне рівняння набуває вигляду
0
( ) ( ) ( ) ( ) ( )
x
y x f x a x b s y s ds . (2)
Тоді рівняння, що розв'язується (з комплексним урахуванням
первинних похибок) має вигляд
0
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ,
x
y x y x f x f x
a x a x b s b s y s y s ds
(3)
де ( ), ( ),f x a x b x — похибки обчислення відповідних функцій,
які можуть бути як спадковими, так і приладовими та методичними.
Віднімаючи вираз (2) з (3), отримаємо інтегральне рівняння для по-
хибки ( )y x розв’язку (2):
* *
0
( ) ( ) ( ) ( ) ( )
x
y x h x a x b s y s ds , (4)
де
*
0 0
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
x x
h x f x a x b s y s ds a x b s y x ds ,
*( ) ( ) ( )b x b x b x , *( ) ( ) ( )a x a x a x . (5)
Від рівняння (4), яке якісно характеризує процес утворення по-
хибки, перейдемо до більш близького для практичного використання
рівняння щодо наближеної похибки
~
( )y x :
Серія: Технічні науки. Випуск 9
25
~ ~ ~
* *
0
( ) ( ) ( ) ( ) ( )
x
y x h x a x b s y s ds , (6)
яке відрізняється вільним членом
~
* * * *
0 0
( ) ( ) ( ) ( ) ( ) ( )
x x
h x f x a x b s y s ds a x b s y s ds ,
де *y x — реально отриманий наближений розв’язок.
Якщо відомі похибки ( ),f x ( )a x і b x , то для визначення
похибки моделювання достатньо розв’язати рівняння (6). Для прак-
тичних цілей доцільно мати можливість оцінювати похибку ( )y x на
підставі відомостей про максимальні значення похибок ( ),f x ( )a x
і b x у зв’язку з чим перейдемо до отримання необхідних для цьо-
го нерівностей.
Оцінюючи (4) по модулю, отримаємо інтегральну нерівність
~
* *
0
( ) ( ) ( )
x
y x h x a x b x y s ds . (7)
Будемо припускати, що функції * ,a x * ,b x * ,f x ,a x
,b x f x неперервні. Це спричинює неперервність y x і *y x , а
отже і h(х). Тоді, використовуючи результати роботи [4] (теорема 1),
для оцінки xy отримуємо співвідношення
~
* *
0
* * * *
0 0
exp
exp .
x
x s
x h x b s a s ds
a x b s h s b y d ds
y
(8)
При обрахунках в оцінку (8) слід замість *b x , *a x і
*f x підставити
*
*
max ,
max ,
x
x
b x b x b x b x
a x a x a x a x
Математичне та комп’ютерне моделювання
26
*max .
x
f x f x f x f x
При визначенні h(х) ідеальну функцію у(х) можна замінити на-
ближеним (машинним) розв’язком *y x або оцінкою
0
0 0
exp
exp .
x
x s
y x f x a x b s a s ds
a x a s f s b a d ds y x
Кількість обрахунків при визначенні оцінки (7) можна зменшити,
якщо замість нерівності (7) використовувати більш зручну нерівність
*
0
,
x
m my x h a b s y s ds (9)
де
*max , max .m m
x x
h h x a a x
Тоді оцінка (8) (з урахуванням результатів роботи [4]) приймає
вигляд
*
0
exp .
x
m mx h a b s dsy
(10)
2. Отримаємо рівняння і оцінку похибки розв’язування (2) при
1
,
n
i i
i
K x s a x b s
(11)
з врахуванням первинних похибок задання функцій f(x), ai(x), bi(x). В
цьому випадку розв’язується рівняння
1 0
.
xn
i i i i
i
y x y x f x f x
a x a x b s b s y s y s ds
(12)
Віднявши (2) від (11), отримаємо
1 0
* * *
1 10 0
.
xn
i i
i
x xn n
i i i i
i i
y x f x a x b s y s ds
a x b s y s ds a x b s y s ds
(13)
Серія: Технічні науки. Випуск 9
27
Перейшовши від даного рівняння до інтегральної нерівності
* *
1 0
,
xn
i i
i
y x h x a x b s y s ds
(14)
отримаємо можливість оцінювати y x , використовуючи оцінки
роботи [4].
3. Оцінимо похибку розв’язання нелінійного рівняння Вольтер-
ри другого роду з ядром (11):
1 0
.
xn
i i
i
y x f x a x b s F y s ds
(15)
Приймаючи на початку n = 1, отримаємо рівняння, що підлягає
розв’язуванню
* * * * *
0
,
x
y x f x a x b s F y s ds (16)
де
* *,y x y x y x f x f x f x
і припускається, що ці функції, а також *a x і *b x неперервні, а
F y x — диференційована по у.
Представимо *F y x
у вигляді виразу
* ,
F y x
F y x F y x y x F y x y x
y x
(17)
який підставимо в (16):
* * *
0
.
x F
y x y x f x a x b s F y s y s ds
y
(18)
Віднявши (15) від (18) отримаємо рівняння для похибки
* *
0
,
x F y s
y x t a x b s y s ds
y s
(19)
де
*
0 0
( ) ( ) ( ) ( ) .
x x
x f x a x b s F y s ds a x b s F y s ds (20)
Таким чином, ми отримали лінійне інтегральне рівняння для по-
хибки y x . Однак, щоб знайти вільний член правої частини цього
Математичне та комп’ютерне моделювання
28
рівняння, необхідно знати точний розв’язок y x рівняння (15). То-
му доцільно застосовувати оцінки як при обрахунку y x , так і при
обрахунку похибки y x .
Аналогічно отримують рівняння для похибки, розв’язуючи (15),
у випадку n > 1:
1 0
* * *
1 10 0
.
xn
i i
i
x xn n
i i i i
i i
y x f x a x b s F y s ds
F y s
a x b s F y s ds a x b x y s ds
y s
(21)
4. Покажемо також можливість оцінки похибки розв’язання не-
лінійного рівняння виду
0
.
x
y x f x a x b s F y s ds (22)
Врахувавши похибки , ,f x a x b x отримаємо рівняння
* * *
0
.
x
y x y x f x a x b s F y s y x ds (23)
Розкладемо функції y x y x і F y x y x в ряди
Тейлора за аргументом y x і обмежимось у цьому розкладі перши-
ми членами:
,
y x
y x y x y x y x
y x
(24)
.
F y x
F y x y x F y x y x
y x
(25)
Після підстановки виразів (24) і (25) в (23) і віднявши (24),
отримаємо лінійне рівняння для похибки
0
* *
0 0
1 x
x x
y x f x a x b s F y s ds
y
y
F y s
a x b s F y s ds a x b s y s ds
y s
(26)
Серія: Технічні науки. Випуск 9
29
при
0
y x
y x
для 0x .
Рівняння (19), (21), (26) є наближеними внаслідок прийнятої об-
меженості відповідних рядів. Для деяких типів нелінійних рівнянь
функції F y x і y x такі, що можна отримати точні рівняння
для похибок. Це має місце у тому випадку, коли функції F і є полі-
номами від y. Якщо, наприклад, 2F y x y x , то точне рівняння
похибки розв’язання (15) при n = 1 приймає вигляд
* * 2
0
2 ,
x
y x x a x b s y s y s y s ds (27)
тобто є нелінійним. Для оцінки його розв’язку слід використовувати
результати, отримані в роботі [4] з нелінійних інтегральних нерівностей.
5. Розглянемо випадок різницевого ядра K(x, s) = K(x – s). Вихід-
не лінійне рівняння при цьому має вигляд
0
.
x
y x K x s y s ds f x (28)
З урахуванням всіх похибок воно приймає вигляд
0
,
x
y x y x f x f x
K x s K x s y s y s ds
(29)
звідки отримуємо наступне рівняння для похибки:
0
,
x
y x h x K x s y s ds (30)
де
0
.
x
h x y x K x s y s ds (31)
Будемо припускати, що різницеве ядро обмежене
,K x G x 0,x (32)
і може бути зведено до виродженого, що дозволяє оперувати оцінкою
1 2G G ,K x s G x s x x (33)
де 1G x і 2G x — додатні функції. Нерівність K x s
G x s слідує з (32). Тоді рівняння (30) можна привести до вигляду
Математичне та комп’ютерне моделювання
30
1 2
0
.
x
y x h x G x G x y s ds (34)
Звідси вважаємо, що h x — диференційовна функція (в іншо-
му випадку її можна замінити оцінкою зверху, що є диференційов-
ною функцією), і на основі результатів роботи [4] маємо
1 2 1
10
1 2
10 0
0
exp
0
exp .
x
x x
h
y x G s G s ds G x
G
h s
G G d
G s
(35)
Для випадку, що часто зустрічається, коли функцію K(x) в (30)
можна замінити експонентною
,xK x Ae 0,x
де α — дійсне число і А 0, отримаємо оцінку похибки типу (35).
При цьому спочатку оцінимо h x :
0
.
x
h x y x K x s y s ds (36)
Нехай також .xK x Ae Оцінимо y x з (28):
0
,
x
x asy x f x Ae e y s ds (37)
звідки згідно [4] при 0
( ) A xy x f x f fe
max .
x
f f x
(38)
Для випадку 0 згідно з [4] маємо
( ) ( ) .Axy x f x f f e
(39)
Запишемо в загальному випадку вираз для оцінки (34):
а) '
1 0G x
1
1 2
1 0
( ) ( ) exp ;
0
xhG x
y x h x h G s G s ds
G
(40)
б) '
1 0G x
Серія: Технічні науки. Випуск 9
31
1 2
0
( ) ( ) exp ,
x
y x h x h h G s G s ds
max ( )
x
h h x
. (41)
Вираз (35) з урахуванням (37) можна після декількох перетво-
рень привести до вигляду
( ) ,
A x
A xh e
y x e
A A
(42)
де max .
x
h h x
При цьому
2 1
( ) ,
2
1
.
A x xe e
h x f x K x M
A
y A
M
A A
(43)
Приклад 1. Нехай первинне рівняння має вигляд
0
( ) ,
x
ax bxy x ke e sy s ds (44)
де 0, 0, 0.a b k
Рівняння, що реально розв’язується
0
( ) ( ) .
x
b b xaxy x y x k k e e s y s y s ds
Виходячи з цього, рівняння для знаходження похибки має вигляд
*
0
( ) ( ) ( ) ,
x
b xy x h x e s y s ds (45)
де
0
1 ( ) .
x
ax bx bxh x ke e e sy s ds (46)
Дамо оцінку h(x):
0
( ) 1 ( ) .
x
ax bxh x k e b e x s y s ds (47)
Оцінку
( ) xy s ke (48)
Математичне та комп’ютерне моделювання
32
знайдемо з (44) відповідно нерівності [4]
0 0 0
(0) ( )
( ) exp ( ) ( ) ( ) exp ( ) ( ) .
(0) ( )
x x sf f s
y x b s a s ds a x b d ds
s
(49)
Підставимо вираз (49) в (47):
1
2
1 1
1 ,
b xax
mx
h x k e b x ke x
e k k b x h x
де max , 1m a b .
Застосуємо до (45) оцінку (49):
1
* 1
0*
0 0
exp
s
bsx x se ds
m b sbsy x b x se ds k ne e ds
, (50)
де * 2max 1 2
x
n m b k k b x b kx
.
Після проведення розрахунків у (50) отримаємо
*
2 *
1 exp 1
1 expb x bxbx m b x
y x h x e e k n
b m b
.
Приклад 2. Рівняння, що розв’язується має вигляд
2
0
, 0, 0.
x
y x a by s ds a b (51)
Враховуючи похибку, обумовлену неточністю задання коефіціє-
нта a , отримаємо
2
0
.
x
y x y x a a b y s y s ds
Рівняння похибки набуде вигляду
0
( ) 2 ( ) ( ) ,
x
y x a by s y s ds
звідки
0
2 ( ) ( ) .
x
y x a b y s y s ds
Згідно з (49)
Серія: Технічні науки. Випуск 9
33
0
exp 2 ( ) .
x
y x a b y s ds
(52)
Підставивши в (52) оцінку для y x , яку отримуємо з рівняння
(51), знаходимо
1( ) ( ) ,y x F F a bx
де 2 1, ,F a a F z z тобто 2 .y x a bx
Остаточно отримаємо
2
0
exp 2 .
x
y x a b a bsds
Висновок. Розглянуті способи, які ґрунтуються на застосуванні
інтегральних нерівностей, дають змогу отримати вирази для оцінки
похибок розв’язання інтегральних рівнянь Вольтерри другого роду,
що має важливе значення при розв’язуванні практичних задач.
Список використаних джерел:
1. Канторович Л. В. Приближенные методы высшего анализа /
Л. В. Канторович, В. И. Крылов. — М. ; Л. : Физматгиз, 1962. —
708c.
2. Трауб Дж. Общая теория оптимальных алгоритмов / Дж. Трауб,
Х. Вожняковский. — М. : Мир, 1983. — 382 с.
3. Сергієнко І. В. Елементи загальної теорії оптимальних алгоритмів
та суміжні питання / І. В. Сергієнко, В. К. Задірака, О. М. Лит-
вин. — К. : Наукова думка, 2012. — 400 с.
4. Верлань А. Ф. В кн.: Точность и надежность кибернетических
систем / А. Ф. Верлань, В. С. Годлевский. — К. : Наукова думка,
1974. — С. 3–8
Possible applications of integral inequalities in obtaining of meaningful
expressions to evaluate errors solutions of Volterra integral equations II
kind. The method is considered on the example of integral equations with
separable kernels.
Key words: integral equations, integral inequalities.
Отримано: 30.10.2013
80-84.pdf
А. Я. Бомба*, д-р техн. наук, професор,
Ю. В. Турбал**, канд. фіз.-мат. наук
*Рівненський державний гуманітарний університет, м. Рівне,
**Національний університет водного господарства та природокористування, м. Рівне
математичне моделювання ПРОЦЕСУ РУХУ солітона в анізотропноМУ пружноМУ тілІ змінної густини
Ключові слова: анізотропія, рівняння руху, солітон, закон Гука, рівняння в частинних похідних.
Список використаних джерел:
Key words: anisotropy, crystal system, the motion equations, solitary wave, Hooke's law.
А. А. Верлань, канд. техн. наук
Национальный технический университет Украины «КПИ», г. Киев.
ОБ ОРГАНИЗАЦИИ СТРУКТУРЫ ИСТОЧНИКОВ ЭЛЕКТРОПИТАНИЯ С ЗАЩИТОЙ И АВТОМАТИЗИРОВАННОЙ СИСТЕМОЙ КОНТРОЛЯ
Ключевые слова: автоматизированные системы контроля, вторичного источника электропитания.
Список использованной литературы:
Key words: automated control systems, secondary power supply.
Д. А. Верлань*, аспірант,
К. С. Чевська**, асистент
*Київський національний університет імені Тараса Шевченка, м. Київ,
**Кам’янець-Подільський національний університет імені Івана Огієнка, м. Кам’янець-Подільський
ОЦІНКА ПОХИБОК РОЗВ’ЯЗАННЯ ІНТЕГРАЛЬНИХ РІВНЯНЬ ВОЛЬТЕРРИ ІІ РОДУ ЗАСОБАМИ ІНТЕГРАЛЬНИХ НЕРІВНОСТЕЙ
Ключові слова: інтегральні рівняння, інтегральні нерівності.
Список використаних джерел:
Key words: integral equations, integral inequalities.
А. П. Власюк*, д-р техн. наук, професор,
Т. А. Дроздовський**, аспірант
Математичне моделювання зміни напружено-деформованого стану ґрунтового масиву при нагнітанні в нього в’яжучого розчину в одновимірній постановці
Ключові слова: математична модель, напружено-деформований стан, вільна межа, числовий розв’язок, метод скінченних різниць, в’яжучий розчин, нагнітання.
1. Постановка задачі
2. Математична модель задачі
3. Розв’язок задачі
3.1. Розв’язок задачі нагнітання
3.2. Розв’язок задачі НДС
3.2.1. Аналітичний розв’язок задачі
Розв’язок задачі (16), (17) має вигляд
3.2.2. Числовий розв’язок задачі
4. Результати числових експериментів
Висновки
Key words: mathematical model, stress strain state, free boundary, numerical solution, finite difference method, binding fluid, injecting.
А. П. Громик*, канд. техн. наук,
І. М. Конет**, д-р фіз.-мат. наук, професор
* Подільський державний аграрно-технічний університет, м. Кам’янець-Подільський,
**Кам’янець-Подільський національний університет імені Івана Огієнка, м. Кам’янець-Подільський
МОДЕЛЮВАННЯ КОЛИВНИХ ПРОЦЕСІВ У НАПІВОБМЕЖЕНОМУ Кусково-одноріднОМУ КЛИНОВИДНОМУ ПОРОЖНИСТОМУ ЦИЛІНДРІ
Ключові слова: моделювання, коливний процес, гіперболічне рівняння, початкові та крайові умови, умови спряження, інтегральне перетворення, функція впливу, функція Гріна.
Список використаних джерел:
Key words: modelling, oscillating, hyperbolic equation, initial and boundary conditions, conditions of conjugation, integral transformation, the influence function, Green's function.
O. A. Diachuk*, Ph. D. of Technical Sciences,
N. L. Kostyan**, Senior Teacher,
A. A. Sytnik***, Ph. D. of Technical Sciences,
F. A. Halmuhametova****, Senior Teacher
*Institute for Economics and Forecasting UNAS, Kyiv,
**Kyiv National University of Technologies and Design, Kyiv,
***Cherkassy state technological university, Cherkassy, Ukraine,
****Tashkent State Technical University, Tashkent
The method and algorithms for identification of dynamic objects on basis of integral equations
Key words: dynamic objects, models, identification algorithms, Volterra integral equations, automatic control systems.
References:
Ключові слова: динамічні об'єкти, моделі, алгоритми ідентифікації, інтегральні рівняння Вольтерра, автоматичні системи управління.
М. М. Каримов*, д-р техн. наук, профессор,
Ю. О. Фуртат**, аспирант,
С. М. Сагатова*, студент
*Ташкентский государственный технический университет, г. Ташкент, Узбекистан,
**Институт проблем моделирования в энергетике им. Г. Е. Пухова НАН Украины, г. Киев
ИСПОЛЬЗОВАНИЕ МОДЕЛИ УЧАЩЕГОСЯ В СИСТЕМАХ ОБУЧЕНИЯ НА ОСНОВЕ ТЕСТОВ
Ключевые слова: модель учащегося, дистрактор, машинный тьютор, эротематический диалог.
Список использованной литературы:
Key words: student model, distractor, machine tutor, erotematic dialog.
В. П. Марценюк, д-р техн. наук, професор,
З. В. Майхрук, асистент
Тернопільський державний медичний університет імені Івана Яковича Горбачевського, м. Тернопіль
Побудова оптимального керування біфуркацією в моделі Ходжкіна-Хакслі на основі принципу максимуму
Ключові слова: модель Ходжкіна-Хакслі, оптимальне керування, принцип максимуму.
<<
/ASCII85EncodePages false
/AllowTransparency false
/AutoPositionEPSFiles true
/AutoRotatePages /All
/Binding /Left
/CalGrayProfile (Gray Gamma 2.2)
/CalRGBProfile (sRGB IEC61966-2.1)
/CalCMYKProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
/sRGBProfile (sRGB IEC61966-2.1)
/CannotEmbedFontPolicy /Warning
/CompatibilityLevel 1.3
/CompressObjects /Tags
/CompressPages true
/ConvertImagesToIndexed true
/PassThroughJPEGImages true
/CreateJobTicket false
/DefaultRenderingIntent /Default
/DetectBlends true
/DetectCurves 0.1000
/ColorConversionStrategy /sRGB
/DoThumbnails false
/EmbedAllFonts true
/EmbedOpenType false
/ParseICCProfilesInComments true
/EmbedJobOptions true
/DSCReportingLevel 0
/EmitDSCWarnings false
/EndPage -1
/ImageMemory 1048576
/LockDistillerParams false
/MaxSubsetPct 100
/Optimize true
/OPM 1
/ParseDSCComments true
/ParseDSCCommentsForDocInfo true
/PreserveCopyPage true
/PreserveDICMYKValues true
/PreserveEPSInfo false
/PreserveFlatness false
/PreserveHalftoneInfo false
/PreserveOPIComments false
/PreserveOverprintSettings true
/StartPage 1
/SubsetFonts true
/TransferFunctionInfo /Apply
/UCRandBGInfo /Remove
/UsePrologue false
/ColorSettingsFile ()
/AlwaysEmbed [ true
]
/NeverEmbed [ true
/Arial-Black
/Arial-BlackItalic
/Arial-BoldItalicMT
/Arial-BoldMT
/Arial-ItalicMT
/ArialMT
/ArialNarrow
/ArialNarrow-Bold
/ArialNarrow-BoldItalic
/ArialNarrow-Italic
/ArialUnicodeMS
/CenturyGothic
/CenturyGothic-Bold
/CenturyGothic-BoldItalic
/CenturyGothic-Italic
/CourierNewPS-BoldItalicMT
/CourierNewPS-BoldMT
/CourierNewPS-ItalicMT
/CourierNewPSMT
/Georgia
/Georgia-Bold
/Georgia-BoldItalic
/Georgia-Italic
/Impact
/LucidaConsole
/Tahoma
/Tahoma-Bold
/TimesNewRomanMT-ExtraBold
/TimesNewRomanPS-BoldItalicMT
/TimesNewRomanPS-BoldMT
/TimesNewRomanPS-ItalicMT
/TimesNewRomanPSMT
/Trebuchet-BoldItalic
/TrebuchetMS
/TrebuchetMS-Bold
/TrebuchetMS-Italic
/Verdana
/Verdana-Bold
/Verdana-BoldItalic
/Verdana-Italic
]
/AntiAliasColorImages false
/CropColorImages false
/ColorImageMinResolution 150
/ColorImageMinResolutionPolicy /OK
/DownsampleColorImages true
/ColorImageDownsampleType /Bicubic
/ColorImageResolution 150
/ColorImageDepth -1
/ColorImageMinDownsampleDepth 1
/ColorImageDownsampleThreshold 1.50000
/EncodeColorImages true
/ColorImageFilter /DCTEncode
/AutoFilterColorImages true
/ColorImageAutoFilterStrategy /JPEG
/ColorACSImageDict <<
/QFactor 0.76
/HSamples [2 1 1 2] /VSamples [2 1 1 2]
>>
/ColorImageDict <<
/QFactor 0.76
/HSamples [2 1 1 2] /VSamples [2 1 1 2]
>>
/JPEG2000ColorACSImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 15
>>
/JPEG2000ColorImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 15
>>
/AntiAliasGrayImages false
/CropGrayImages false
/GrayImageMinResolution 150
/GrayImageMinResolutionPolicy /OK
/DownsampleGrayImages true
/GrayImageDownsampleType /Bicubic
/GrayImageResolution 150
/GrayImageDepth -1
/GrayImageMinDownsampleDepth 2
/GrayImageDownsampleThreshold 1.50000
/EncodeGrayImages true
/GrayImageFilter /DCTEncode
/AutoFilterGrayImages true
/GrayImageAutoFilterStrategy /JPEG
/GrayACSImageDict <<
/QFactor 0.76
/HSamples [2 1 1 2] /VSamples [2 1 1 2]
>>
/GrayImageDict <<
/QFactor 0.76
/HSamples [2 1 1 2] /VSamples [2 1 1 2]
>>
/JPEG2000GrayACSImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 15
>>
/JPEG2000GrayImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 15
>>
/AntiAliasMonoImages false
/CropMonoImages false
/MonoImageMinResolution 1200
/MonoImageMinResolutionPolicy /OK
/DownsampleMonoImages true
/MonoImageDownsampleType /Bicubic
/MonoImageResolution 1200
/MonoImageDepth -1
/MonoImageDownsampleThreshold 1.50000
/EncodeMonoImages true
/MonoImageFilter /CCITTFaxEncode
/MonoImageDict <<
/K -1
>>
/AllowPSXObjects true
/CheckCompliance [
/PDFX1a:2001
]
/PDFX1aCheck false
/PDFX3Check false
/PDFXCompliantPDFOnly false
/PDFXNoTrimBoxError true
/PDFXTrimBoxToMediaBoxOffset [
0.00000
0.00000
0.00000
0.00000
]
/PDFXSetBleedBoxToMediaBox true
/PDFXBleedBoxToTrimBoxOffset [
0.00000
0.00000
0.00000
0.00000
]
/PDFXOutputIntentProfile (None)
/PDFXOutputConditionIdentifier ()
/PDFXOutputCondition ()
/PDFXRegistryName ()
/PDFXTrapped /False
/CreateJDFFile false
/Description <<
/ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
/BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043f043e04340445043e0434044f044904380020043704300020043d043004340435043604340435043d0020043f044004350433043b04350434002004380020043f04350447043004420020043d04300020043104380437043d0435044100200434043e043a0443043c0435043d04420438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
/CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
/ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
/GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
/HEB <FEFF05d405e905ea05de05e905d5002005d105d405d205d305e805d505ea002005d005dc05d4002005db05d305d9002005dc05d905e605d505e8002005de05e105de05db05d9002000410064006f006200650020005000440046002005e205d105d505e8002005d405e605d205d4002005d505d405d305e405e105d4002005d005de05d905e005d4002005e905dc002005de05e105de05db05d905dd002005e205e105e705d905d905dd002e002005de05e105de05db05d90020005000440046002005e905e005d505e605e805d5002005e005d905ea05e005d905dd002005dc05e405ea05d905d705d4002005d105d005de05e605e205d505ea0020004100630072006f006200610074002005d5002d00410064006f00620065002000520065006100640065007200200035002e0030002005d505d205e805e105d005d505ea002005de05ea05e705d305de05d505ea002005d905d505ea05e8002e>
/HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
/HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
/JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
/LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b0075007200690065002000740069006e006b006100200070006100740069006b0069006d006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e0074006900200076006500720073006c006f00200064006f006b0075006d0065006e007400750073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
/LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020007000690065006d01130072006f00740069002000640072006f016100610069002000620069007a006e00650073006100200064006f006b0075006d0065006e007400750020006100700073006b006100740065006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
/POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
/RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
/SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
/SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
/TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
/UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043d0430043404560439043d043e0433043e0020043f0435044004350433043b044f043404430020044204300020043404400443043a0443002004340456043b043e04320438044500200434043e043a0443043c0435043d044204560432002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
/RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
>>
/Namespace [
(Adobe)
(Common)
(1.0)
]
/OtherNamespaces [
<<
/AsReaderSpreads false
/CropImagesToFrames true
/ErrorControl /WarnAndContinue
/FlattenerIgnoreSpreadOverrides false
/IncludeGuidesGrids false
/IncludeNonPrinting false
/IncludeSlug false
/Namespace [
(Adobe)
(InDesign)
(4.0)
]
/OmitPlacedBitmaps false
/OmitPlacedEPS false
/OmitPlacedPDF false
/SimulateOverprint /Legacy
>>
<<
/AllowImageBreaks true
/AllowTableBreaks true
/ExpandPage false
/HonorBaseURL true
/HonorRolloverEffect false
/IgnoreHTMLPageBreaks false
/IncludeHeaderFooter false
/MarginOffset [
0
0
0
0
]
/MetadataAuthor ()
/MetadataKeywords ()
/MetadataSubject ()
/MetadataTitle ()
/MetricPageSize [
0
0
]
/MetricUnit /inch
/MobileCompatible 0
/Namespace [
(Adobe)
(GoLive)
(8.0)
]
/OpenZoomToHTMLFontSize false
/PageOrientation /Portrait
/RemoveBackground false
/ShrinkContent true
/TreatColorsAs /MainMonitorColors
/UseEmbeddedProfiles false
/UseHTMLTitleAsMetadata true
>>
<<
/AddBleedMarks false
/AddColorBars false
/AddCropMarks false
/AddPageInfo false
/AddRegMarks false
/BleedOffset [
0
0
0
0
]
/ConvertColors /ConvertToRGB
/DestinationProfileName (sRGB IEC61966-2.1)
/DestinationProfileSelector /UseName
/Downsample16BitImages true
/FlattenerPreset <<
/PresetSelector /MediumResolution
>>
/FormElements true
/GenerateStructure false
/IncludeBookmarks false
/IncludeHyperlinks false
/IncludeInteractive false
/IncludeLayers false
/IncludeProfiles true
/MarksOffset 6
/MarksWeight 0.250000
/MultimediaHandling /UseObjectSettings
/Namespace [
(Adobe)
(CreativeSuite)
(2.0)
]
/PDFXOutputIntentProfileSelector /DocumentCMYK
/PageMarksFile /RomanDefault
/PreserveEditing true
/UntaggedCMYKHandling /UseDocumentProfile
/UntaggedRGBHandling /LeaveUntagged
/UseDocumentBleed false
>>
]
>> setdistillerparams
<<
/HWResolution [600 600]
/PageSize [419.528 595.276]
>> setpagedevice
|