Гіперболічні крайові задачі в обмежених багатошарових просторових областях
Методом функції впливу та функції Гріна (головних розв’язків) побудовано інтегральні зображення точних аналітичних розв’язків алгоритмічного характеру гіперболічних крайових задач в напівобмежених багатошарових (кусково-однорідних) просторових областях. Для побудови головних розв’язків залучено відп...
Saved in:
| Published in: | Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки |
|---|---|
| Date: | 2013 |
| Main Author: | |
| Format: | Article |
| Language: | Ukrainian |
| Published: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2013
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/86475 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Гіперболічні крайові задачі в обмежених багатошарових просторових областях / І.М. Конет // Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2013. — Вип. 8. — С. 84-101. — Бібліогр.: 25 назв. — укр. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | Методом функції впливу та функції Гріна (головних розв’язків) побудовано інтегральні зображення точних аналітичних розв’язків алгоритмічного характеру гіперболічних крайових задач в напівобмежених багатошарових (кусково-однорідних) просторових областях. Для побудови головних розв’язків залучено відповідні інтегральні перетворення Фур’є на декартових осі, півосі та сегменті, а також інтегральне перетворення Фур’є на декартовому сегменті з n точками спряження.
The method of influence functions and Green's function (key solutions), integral image of the exact analytical solutions of algorithmic nature of hyperbolic boundary value problems in multi napivobmezhenyh (piecewise-homogeneous) spatial regions. To build a major integrated solutions involving the appropriate Fourier transform to Cartesian axes, and pivosi segment and integral Fourier transformation to Cartesian segment with n points of conjugation.
|
|---|---|
| ISSN: | 2308-5878 |