О вложениях S² в E⁴

Доказано, что для любой гладко вложенной сферы S² в евклидово пространство E⁴ всегда найдется точка такая, что любая двумерная плоскость, проходящая через эту точку, пересекает сферу S². Доведено, що для будь-якої гладко вкладеної сфери S² у евклiдiв простiр E⁴ завжди зна- йдеться точка така, що...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Доповіді НАН України
Дата:2013
Автор: Болотов, Д.В.
Формат: Стаття
Мова:Russian
Опубліковано: Видавничий дім "Академперіодика" НАН України 2013
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/86493
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:О вложениях S² в E⁴ / Д.В. Болотов // Доповiдi Нацiональної академiї наук України. — 2013. — № 11. — С. 19–22. — Бібліогр.: 2 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Доказано, что для любой гладко вложенной сферы S² в евклидово пространство E⁴ всегда найдется точка такая, что любая двумерная плоскость, проходящая через эту точку, пересекает сферу S². Доведено, що для будь-якої гладко вкладеної сфери S² у евклiдiв простiр E⁴ завжди зна- йдеться точка така, що будь-яка двовимiрна площина, яка проходить через цю точку, перетинає сферу S². We prove that, for any smoothly embedded sphere S² in the Euclidean space E⁴, there is a point such that any two-dimensional plane passing through this point intersects the sphere S².