Создание QSAR моделей для поиска ингибиторов тубулина

Описаны новые QSAR модели для поиска ингибиторов тубулина. Точность прогноза для учебных и тестовых выборок составляет Ac = 0,96÷0,97 и Ac = 0,95÷0,97 соответственно. Для построения моделей использованы ассоциативные нейронные сети. Оценка качества моделей проведена методами внутренней и внешней пр...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Доповіді НАН України
Datum:2013
Hauptverfasser: Семенюта, И.В., Ковалишин, В.В., Коперник, И.Н., Василенко, А.Н., Прокопенкo, В.В., Броварец, В.С.
Format: Artikel
Sprache:Russian
Veröffentlicht: Видавничий дім "Академперіодика" НАН України 2013
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/86516
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Создание QSAR моделей для поиска ингибиторов тубулина / И.В. Семенюта, В.В. Ковалишин, И.Н. Коперник, А.Н. Василенко, В.В. Прокопенкo, В.С. Броварец // Доповiдi Нацiональної академiї наук України. — 2013. — № 11. — С. 168–173. — Бібліогр.: 15 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Описаны новые QSAR модели для поиска ингибиторов тубулина. Точность прогноза для учебных и тестовых выборок составляет Ac = 0,96÷0,97 и Ac = 0,95÷0,97 соответственно. Для построения моделей использованы ассоциативные нейронные сети. Оценка качества моделей проведена методами внутренней и внешней проверки. На выборке из 75 новых соединений правильно классифицированно 63% всех веществ, а также 69% активных соединений. С помощью индекса Дайса рассчитана область применения созданных QSAR моделей. Показано, что количество правильно спрогнозированных соединений с DI 0,6−0,7 и ≥0,7 составляет 74 и 85% соответственно. Описано новi QSAR моделi для пошуку iнгiбiторiв тубулiну. Точнiсть прогнозу для навчальних та тестових вибiрок становить Ac = 0,96 ÷ 0,97 та Ac = 0,95 ÷ 0,97 вiдповiдно. Для побудови моделей використано асоцiативнi нейроннi мережi. Оцiнку якостi моделей проведено методами внутрiшньої i зовнiшньої перевiрки. На вибiрцi з 75 нових сполук правильно класифiковано 63% усiх речовин, а також 69% активних сполук. За допомогою iндексу Дайса розраховано область застосування створених QSAR моделей. Показано, що кiлькiсть правильно спрогнозованих сполук з DI 0,6−0,7 i ≥0,7 становить 74 та 85% вiдповiдно. The study presents new QSAR models to search for tubulin inhibitors. The prediction accuracies for the training and test sets are Ac = 0.95−0.97 and Ac = 0.95−0.97, accordingly. QSAR methodologies used Associative Neural Networks. The quality of models have been evaluated using both internal and external validation methods. In a sample of 75 new compounds, we correctly classified 63% of all compounds and 69% of active molecules. The applicability domain of QSAR models was evaluated by the Dice index. It is shown that the percentages of correctly predicted compounds with DI equal to 0.6−0.7 and ≥0.7 are 74 and 85%, respectively.