Топологія простору лінійних функціональних інтервалів

У статті у квазілінійному просторі лінійних інтервальних обмежників введене поняття віддалі між елементами, їх норми та ширини. Наявність віддалі перетворює його в метричний простір. Доведено, що цей метричний простір є повним. Введення метрики робить цей простір топологічним простором. При цьому по...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки
Дата:2014
Автор: Сеньо, П.С.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Інститут кібернетики ім. В.М. Глушкова НАН України 2014
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/86577
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Топологія простору лінійних функціональних інтервалів / П.С. Сеньо // Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2014. — Вип. 11. — С. 209-223. — Бібліогр.: 4 назв. — укр.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-86577
record_format dspace
spelling Сеньо, П.С.
2015-09-21T17:18:17Z
2015-09-21T17:18:17Z
2014
Топологія простору лінійних функціональних інтервалів / П.С. Сеньо // Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2014. — Вип. 11. — С. 209-223. — Бібліогр.: 4 назв. — укр.
2308-5878
https://nasplib.isofts.kiev.ua/handle/123456789/86577
519.21:519.61
У статті у квазілінійному просторі лінійних інтервальних обмежників введене поняття віддалі між елементами, їх норми та ширини. Наявність віддалі перетворює його в метричний простір. Доведено, що цей метричний простір є повним. Введення метрики робить цей простір топологічним простором. При цьому поняття збіжності і неперервності можна використовувати звичним чином, як і у випадку метричного простору. Отримані висновки дають можливість на основі математики лінійних функціональних інтервалів будувати та досліджувати ефективні методи розв’язування широкого класу задач.
The article specifies a notion of distance between elements, their norms and width that is included into the quasilinear space of linear interval constraints. The presence of such distance returns the quasilinear space into the metrical space. It is proved that this metrical space is full. Metrication makes this space a topological one. In this case a notion of convergence and continuity can be used in a common way as well as a metrical space is concerned. The results got make it able to build and research effective methods of solving a big set of problems on the basis of mathematics of linear functional intervals.
uk
Інститут кібернетики ім. В.М. Глушкова НАН України
Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки
Топологія простору лінійних функціональних інтервалів
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Топологія простору лінійних функціональних інтервалів
spellingShingle Топологія простору лінійних функціональних інтервалів
Сеньо, П.С.
title_short Топологія простору лінійних функціональних інтервалів
title_full Топологія простору лінійних функціональних інтервалів
title_fullStr Топологія простору лінійних функціональних інтервалів
title_full_unstemmed Топологія простору лінійних функціональних інтервалів
title_sort топологія простору лінійних функціональних інтервалів
author Сеньо, П.С.
author_facet Сеньо, П.С.
publishDate 2014
language Ukrainian
container_title Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки
publisher Інститут кібернетики ім. В.М. Глушкова НАН України
format Article
description У статті у квазілінійному просторі лінійних інтервальних обмежників введене поняття віддалі між елементами, їх норми та ширини. Наявність віддалі перетворює його в метричний простір. Доведено, що цей метричний простір є повним. Введення метрики робить цей простір топологічним простором. При цьому поняття збіжності і неперервності можна використовувати звичним чином, як і у випадку метричного простору. Отримані висновки дають можливість на основі математики лінійних функціональних інтервалів будувати та досліджувати ефективні методи розв’язування широкого класу задач. The article specifies a notion of distance between elements, their norms and width that is included into the quasilinear space of linear interval constraints. The presence of such distance returns the quasilinear space into the metrical space. It is proved that this metrical space is full. Metrication makes this space a topological one. In this case a notion of convergence and continuity can be used in a common way as well as a metrical space is concerned. The results got make it able to build and research effective methods of solving a big set of problems on the basis of mathematics of linear functional intervals.
issn 2308-5878
url https://nasplib.isofts.kiev.ua/handle/123456789/86577
citation_txt Топологія простору лінійних функціональних інтервалів / П.С. Сеньо // Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2014. — Вип. 11. — С. 209-223. — Бібліогр.: 4 назв. — укр.
work_keys_str_mv AT senʹops topologíâprostorulíníinihfunkcíonalʹnihíntervalív
first_indexed 2025-11-27T22:25:09Z
last_indexed 2025-11-27T22:25:09Z
_version_ 1850852910595833856