О линейных группах с ограничениями на систему всех собственных подгрупп
Пусть G ≤ GL(F,A) — линейная группа над конечным полем F, G ≠ G′, |G| ≠ q^k, где q — простое число, и для каждой собственной подгруппы H группы G факторпространство A/CA(H) конечномерно. Доказано, что факторпространство A/CA(G) конечномерно, и описана структура группы G. Нехай G ≤ GL(F,A) — лiнiйн...
Gespeichert in:
| Veröffentlicht in: | Доповіді НАН України |
|---|---|
| Datum: | 2013 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | Russian |
| Veröffentlicht: |
Видавничий дім "Академперіодика" НАН України
2013
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/86700 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | О линейных группах с ограничениями на систему всех собственных подгрупп / О.Ю. Дашкова // Доповiдi Нацiональної академiї наук України. — 2013. — № 12. — С. 7–10. — Бібліогр.: 9 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | Пусть G ≤ GL(F,A) — линейная группа над конечным полем F, G ≠ G′, |G| ≠ q^k, где q —
простое число, и для каждой собственной подгруппы H группы G факторпространство
A/CA(H) конечномерно. Доказано, что факторпространство A/CA(G) конечномерно, и описана структура группы G.
Нехай G ≤ GL(F,A) — лiнiйна група над скiнченним полем F, G ≠ G′, |G| ≠ q^k, де q — просте число, та для кожної власної пiдгрупи H групи G факторпростiр A/CA(H) є скiнченновимiрним. Доведено, що факторпростiр A/CA(G) є скiнченновимiрним, та описано
структуру групи G.
Let G ≤ GL(F,A) be a linear group over a finite field F, G ≠ G′, |G| ≠ q^k, where q is prime, and
let A/CA(H) be a finite-dimensional quotient space for each proper subgroup H of G. It is proved
that A/CA(G) is the finite-dimensional quotient space, and the structure of a group G is described.
|
|---|---|
| ISSN: | 1025-6415 |