Exact solutions for some modifications of the nonlinear Cahn–Hilliard equation

The exact travelling wave solutions for convective, higher-order convective, and convectiveviscous Cahn–Hilliard equations are obtained. Without any additional restrictions on the parameters, the solutions with non-zero propagation velocity exist only for an asymmetric potential. However, for an ad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Доповіді НАН України
Datum:2013
Hauptverfasser: Mchedlov-Petrosyan, P.O., Kopiychenko, D.Yu.
Format: Artikel
Sprache:English
Veröffentlicht: Видавничий дім "Академперіодика" НАН України 2013
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/86714
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Exact solutions for some modifications of the nonlinear Cahn–Hilliard equation / P.O. Mchedlov-Petrosyan, D.Yu. Kopiychenko // Доповiдi Нацiональної академiї наук України. — 2013. — № 12. — С. 88–93. — Бібліогр.: 15 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:The exact travelling wave solutions for convective, higher-order convective, and convectiveviscous Cahn–Hilliard equations are obtained. Without any additional restrictions on the parameters, the solutions with non-zero propagation velocity exist only for an asymmetric potential. However, for an additional constraint on the higher-order convective term or for a special balance between nonlinearity and viscosity, the non-zero velocity exists for a symmetric potential as well. In the latter case, the exact two-wave solution is obtained; asymptotically, it converges to the well-known static kink solution. Отримано точнi розв’язки у виглядi бiжучої хвилi для конвективного, конвективного з бiльшим ступенем нелiнiйностi та конвективно-в’язкого рiвняння Кана–Хiлларда. Без будь-яких додаткових обмежень на параметри розв’язки з ненульовою швидкiстю iснують тiльки для асиметричного потенцiалу. Однак при додатковому обмеженнi на конвективний член старшого ступеня або у випадку спецiального балансу мiж нелiнiйнiстю та в’язкiстю розв’язки з ненульовою швидкiстю iснують i для симетричного потенцiалу. Для останнього випадку отримано i точний двохвильовий роз’язок; асимптотично вiн збiгається до вiдомого статичного кiнк-роз’язку. Получены точные решения в виде бегущей волны для конвективного, конвективного с более высокой степенью нелинейности и конвективно-вязкого уравнений Кана–Хилларда. Без каких-либо дополнительных ограничений на параметры решения с ненулевой скоростью распространения существуют только для асимметричного потенциала. Однако при дополнительном ограничении на конвективный член старшего порядка или для случая специального баланса между нелинейностью и вязкостью решения с ненулевой скоростью существуют и для симметричного потенциала. Для последнего случая получено и точное двухволновое решение; асимптотически оно сходится к известному статическому кинк-решению.
ISSN:1025-6415