О движении точки, стесненной плоской симметричной связью

На однопараметричній множині замкнених плоских в'язей, що мають чотири осі симетрії, побудовано систему неперервних процесів з періодами T є √2,8}. Ці процеси виражають значення декартових координат рухомої точки як функцій пройденого шляху. Виявлено 2π періодичні процеси, що відрізняються від...

Full description

Saved in:
Bibliographic Details
Published in:Прикладная механика
Date:2013
Main Author: Плахтиенко, Н.П.
Format: Article
Language:Russian
Published: Інститут механіки ім. С.П. Тимошенка НАН України 2013
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/87803
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:О движении точки, стесненной плоской симметричной связью / Н.П. Плахтиенко // Прикладная механика. — 2013. — Т. 49, № 5. — С. 122-138. — Бібліогр.: 13 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-87803
record_format dspace
spelling Плахтиенко, Н.П.
2015-10-25T18:41:46Z
2015-10-25T18:41:46Z
2013
О движении точки, стесненной плоской симметричной связью / Н.П. Плахтиенко // Прикладная механика. — 2013. — Т. 49, № 5. — С. 122-138. — Бібліогр.: 13 назв. — рос.
0032-8243
https://nasplib.isofts.kiev.ua/handle/123456789/87803
На однопараметричній множині замкнених плоских в'язей, що мають чотири осі симетрії, побудовано систему неперервних процесів з періодами T є √2,8}. Ці процеси виражають значення декартових координат рухомої точки як функцій пройденого шляху. Виявлено 2π періодичні процеси, що відрізняються від класичних тригонометричних знаком кривизни в кожній точці її існування. Обчислено асимптотичні 2³ періодичні процеси і застосовано в задачі про рух матеріальної точки по замкнутій плоско-ребристій поверхні. Вказано спосіб побудови неперервних еволюційних процесів гіперболічного типу, аргументами яких є довжини дуг розімкнених ліній з парою осей симетрії. Встановлено зв'язок диференціала дуги плоскої кривої з лагранжіаном простої динамічної системи ненатурального типу. Побудовано нелінійну динамічну систему другого порядку, частинними розв'язками якої можуть бути Т-періодичні або еволюційні процеси гіперболічного типу, що залежать від початкових значень.
On the one-parametric set of closed plane constraints with four symmetry axes, the system of continuous processes with periods T є √2,8}. is constructed. They express the values of Cartesian coordinates of the moving point as the functions of passed distance. The 2π – periodic processes are revealed, which are differing from the classical trigonometrical process by the curvature sign in every point of its existence. The asymptotic 2³-periodic processes are evaluated and they are applied to the problem on motion of the material point over the closed plane-ribbed surface. A way is shown to construct the continuous evolution processes of hyperbolic type, which arguments are the lengths of arcs of open lines with a pair of symmetry axes. A link is established between the differential of plane curve with Lagrangian of the simple dynamical system of non-natural type. A nonlinear dynamical system of the second order is built, the partial solution of which can be T periodic or evolution processes of hyperbolic type, what depends on the initial values.
ru
Інститут механіки ім. С.П. Тимошенка НАН України
Прикладная механика
О движении точки, стесненной плоской симметричной связью
On Motion of a Point, Tight by a Plane Symmetric Constraint
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title О движении точки, стесненной плоской симметричной связью
spellingShingle О движении точки, стесненной плоской симметричной связью
Плахтиенко, Н.П.
title_short О движении точки, стесненной плоской симметричной связью
title_full О движении точки, стесненной плоской симметричной связью
title_fullStr О движении точки, стесненной плоской симметричной связью
title_full_unstemmed О движении точки, стесненной плоской симметричной связью
title_sort о движении точки, стесненной плоской симметричной связью
author Плахтиенко, Н.П.
author_facet Плахтиенко, Н.П.
publishDate 2013
language Russian
container_title Прикладная механика
publisher Інститут механіки ім. С.П. Тимошенка НАН України
format Article
title_alt On Motion of a Point, Tight by a Plane Symmetric Constraint
description На однопараметричній множині замкнених плоских в'язей, що мають чотири осі симетрії, побудовано систему неперервних процесів з періодами T є √2,8}. Ці процеси виражають значення декартових координат рухомої точки як функцій пройденого шляху. Виявлено 2π періодичні процеси, що відрізняються від класичних тригонометричних знаком кривизни в кожній точці її існування. Обчислено асимптотичні 2³ періодичні процеси і застосовано в задачі про рух матеріальної точки по замкнутій плоско-ребристій поверхні. Вказано спосіб побудови неперервних еволюційних процесів гіперболічного типу, аргументами яких є довжини дуг розімкнених ліній з парою осей симетрії. Встановлено зв'язок диференціала дуги плоскої кривої з лагранжіаном простої динамічної системи ненатурального типу. Побудовано нелінійну динамічну систему другого порядку, частинними розв'язками якої можуть бути Т-періодичні або еволюційні процеси гіперболічного типу, що залежать від початкових значень. On the one-parametric set of closed plane constraints with four symmetry axes, the system of continuous processes with periods T є √2,8}. is constructed. They express the values of Cartesian coordinates of the moving point as the functions of passed distance. The 2π – periodic processes are revealed, which are differing from the classical trigonometrical process by the curvature sign in every point of its existence. The asymptotic 2³-periodic processes are evaluated and they are applied to the problem on motion of the material point over the closed plane-ribbed surface. A way is shown to construct the continuous evolution processes of hyperbolic type, which arguments are the lengths of arcs of open lines with a pair of symmetry axes. A link is established between the differential of plane curve with Lagrangian of the simple dynamical system of non-natural type. A nonlinear dynamical system of the second order is built, the partial solution of which can be T periodic or evolution processes of hyperbolic type, what depends on the initial values.
issn 0032-8243
url https://nasplib.isofts.kiev.ua/handle/123456789/87803
fulltext
citation_txt О движении точки, стесненной плоской симметричной связью / Н.П. Плахтиенко // Прикладная механика. — 2013. — Т. 49, № 5. — С. 122-138. — Бібліогр.: 13 назв. — рос.
work_keys_str_mv AT plahtienkonp odviženiitočkistesnennoiploskoisimmetričnoisvâzʹû
AT plahtienkonp onmotionofapointtightbyaplanesymmetricconstraint
first_indexed 2025-11-25T20:53:20Z
last_indexed 2025-11-25T20:53:20Z
_version_ 1850538523749253120