Characteristics of plasma streams and optimization of operational regimes for magnetoplasma compressor
The main objective of these studies is characterization of dense xenon plasma streams generated by magnetoplasma compressor (MPC) in different operational regimes. Optimization of plasma compression in MPC allows increase of the plasma stream pressure up to 22…25 bar, average temperature of electron...
Saved in:
| Published in: | Вопросы атомной науки и техники |
|---|---|
| Date: | 2011 |
| Main Authors: | , , , , , , , , |
| Format: | Article |
| Language: | English |
| Published: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2011
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/90775 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Characteristics of plasma streams and optimization of operational regimes for magnetoplasma compressor / A.N. Bandura, O.V. Byrka, I.E. Garkusha, M.S. Ladygina, A.K. Marchenko, Yu.V. Petrov, D.G. Solyakov, V.V. Chebotarev, A.A. Chuvilo // Вопросы атомной науки и техники. — 2011. — № 1. — С. 68-70. — Бібліогр.: 6 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-90775 |
|---|---|
| record_format |
dspace |
| spelling |
Bandura, A.N. Byrka, O.V. Garkusha, I.E. Ladygina, M.S. Marchenko, A.K. Petrov, Yu.V. Solyakov, D.G. Chebotarev, V.V. Chuvilo, A.A. 2016-01-04T14:08:55Z 2016-01-04T14:08:55Z 2011 Characteristics of plasma streams and optimization of operational regimes for magnetoplasma compressor / A.N. Bandura, O.V. Byrka, I.E. Garkusha, M.S. Ladygina, A.K. Marchenko, Yu.V. Petrov, D.G. Solyakov, V.V. Chebotarev, A.A. Chuvilo // Вопросы атомной науки и техники. — 2011. — № 1. — С. 68-70. — Бібліогр.: 6 назв. — англ. 1562-6016 PACS: 52.30.-q; 52.30.Cv https://nasplib.isofts.kiev.ua/handle/123456789/90775 The main objective of these studies is characterization of dense xenon plasma streams generated by magnetoplasma compressor (MPC) in different operational regimes. Optimization of plasma compression in MPC allows increase of the plasma stream pressure up to 22…25 bar, average temperature of electrons of 10…20 eV and plasma stream velocity varied in the range of (2…9)×10⁶ cm/s depending on operation regime. Spectroscopy measurements demonstrate that in these conditions most of Xe spectral lines are reabsorbed. In the case of known optical thickness, the real value of electron density can be calculated with accounting self-absorption. Estimations of optical thickness were performed and resulting electron density in focus region was evaluated as 10¹⁸ cm⁻³. Remove selected Проведено експерименти з оптимізації режимів роботи МПК та виміряно параметри плазмових потоків при роботі на ксеноні. Проаналізовано розподіли тиску в плазмовому потоці, швидкість та температура плазми. Спектроскопічні вимірювання показали, що більшість спектральних ліній ксенону самопоглинені. У випадку відомої оптичної товщини, реальна електронна густина може бути обчислена з урахуванням ефекту самопоглинання. Були проведені оцінки оптичної товщини, в результаті чого розрахована величина концентрації електронів в області компресії – 10¹⁸ см⁻³. Проведены эксперименты по оптимизации режимов работы МПК, измерены параметры плазменных потоков при работе на ксеноне. Проанализированы распределения давления в плазменном потоке, скорость и температура плазмы. Спектроскопические измерения показали, что большинство спектральных линий ксенона самопоглощены. В случае известной оптической толщины реальная электронная плотность может быть вычислена с учетом эффекта самопоглощения. Проведены оценки оптической толщины, в результате чего рассчитано значение концентрации электронов в области компрессии – 10¹⁸ см⁻³. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Динамика плазмы и взаимодействие плазма-стенка Characteristics of plasma streams and optimization of operational regimes for magnetoplasma compressor Характеристики плазмових потоків та оптимізація робочих режимів магнітоплазмового компресора Характеристики плазменных потоков и оптимизация рабочих режимов магнитоплазменного компрессора Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Characteristics of plasma streams and optimization of operational regimes for magnetoplasma compressor |
| spellingShingle |
Characteristics of plasma streams and optimization of operational regimes for magnetoplasma compressor Bandura, A.N. Byrka, O.V. Garkusha, I.E. Ladygina, M.S. Marchenko, A.K. Petrov, Yu.V. Solyakov, D.G. Chebotarev, V.V. Chuvilo, A.A. Динамика плазмы и взаимодействие плазма-стенка |
| title_short |
Characteristics of plasma streams and optimization of operational regimes for magnetoplasma compressor |
| title_full |
Characteristics of plasma streams and optimization of operational regimes for magnetoplasma compressor |
| title_fullStr |
Characteristics of plasma streams and optimization of operational regimes for magnetoplasma compressor |
| title_full_unstemmed |
Characteristics of plasma streams and optimization of operational regimes for magnetoplasma compressor |
| title_sort |
characteristics of plasma streams and optimization of operational regimes for magnetoplasma compressor |
| author |
Bandura, A.N. Byrka, O.V. Garkusha, I.E. Ladygina, M.S. Marchenko, A.K. Petrov, Yu.V. Solyakov, D.G. Chebotarev, V.V. Chuvilo, A.A. |
| author_facet |
Bandura, A.N. Byrka, O.V. Garkusha, I.E. Ladygina, M.S. Marchenko, A.K. Petrov, Yu.V. Solyakov, D.G. Chebotarev, V.V. Chuvilo, A.A. |
| topic |
Динамика плазмы и взаимодействие плазма-стенка |
| topic_facet |
Динамика плазмы и взаимодействие плазма-стенка |
| publishDate |
2011 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Характеристики плазмових потоків та оптимізація робочих режимів магнітоплазмового компресора Характеристики плазменных потоков и оптимизация рабочих режимов магнитоплазменного компрессора |
| description |
The main objective of these studies is characterization of dense xenon plasma streams generated by magnetoplasma compressor (MPC) in different operational regimes. Optimization of plasma compression in MPC allows increase of the plasma stream pressure up to 22…25 bar, average temperature of electrons of 10…20 eV and plasma stream velocity varied in the range of (2…9)×10⁶ cm/s depending on operation regime. Spectroscopy measurements demonstrate that in these conditions most of Xe spectral lines are reabsorbed. In the case of known optical thickness, the real value of electron density can be calculated with accounting self-absorption. Estimations of optical thickness were performed and resulting electron density in focus region was evaluated as 10¹⁸ cm⁻³.
Remove selected
Проведено експерименти з оптимізації режимів роботи МПК та виміряно параметри плазмових потоків при роботі на ксеноні. Проаналізовано розподіли тиску в плазмовому потоці, швидкість та температура плазми. Спектроскопічні вимірювання показали, що більшість спектральних ліній ксенону самопоглинені. У випадку відомої оптичної товщини, реальна електронна густина може бути обчислена з урахуванням ефекту самопоглинання. Були проведені оцінки оптичної товщини, в результаті чого розрахована величина концентрації електронів в області компресії – 10¹⁸ см⁻³.
Проведены эксперименты по оптимизации режимов работы МПК, измерены параметры плазменных потоков при работе на ксеноне. Проанализированы распределения давления в плазменном потоке, скорость и температура плазмы. Спектроскопические измерения показали, что большинство спектральных линий ксенона самопоглощены. В случае известной оптической толщины реальная электронная плотность может быть вычислена с учетом эффекта самопоглощения. Проведены оценки оптической толщины, в результате чего рассчитано значение концентрации электронов в области компрессии – 10¹⁸ см⁻³.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/90775 |
| citation_txt |
Characteristics of plasma streams and optimization of operational regimes for magnetoplasma compressor / A.N. Bandura, O.V. Byrka, I.E. Garkusha, M.S. Ladygina, A.K. Marchenko, Yu.V. Petrov, D.G. Solyakov, V.V. Chebotarev, A.A. Chuvilo // Вопросы атомной науки и техники. — 2011. — № 1. — С. 68-70. — Бібліогр.: 6 назв. — англ. |
| work_keys_str_mv |
AT banduraan characteristicsofplasmastreamsandoptimizationofoperationalregimesformagnetoplasmacompressor AT byrkaov characteristicsofplasmastreamsandoptimizationofoperationalregimesformagnetoplasmacompressor AT garkushaie characteristicsofplasmastreamsandoptimizationofoperationalregimesformagnetoplasmacompressor AT ladyginams characteristicsofplasmastreamsandoptimizationofoperationalregimesformagnetoplasmacompressor AT marchenkoak characteristicsofplasmastreamsandoptimizationofoperationalregimesformagnetoplasmacompressor AT petrovyuv characteristicsofplasmastreamsandoptimizationofoperationalregimesformagnetoplasmacompressor AT solyakovdg characteristicsofplasmastreamsandoptimizationofoperationalregimesformagnetoplasmacompressor AT chebotarevvv characteristicsofplasmastreamsandoptimizationofoperationalregimesformagnetoplasmacompressor AT chuviloaa characteristicsofplasmastreamsandoptimizationofoperationalregimesformagnetoplasmacompressor AT banduraan harakteristikiplazmovihpotokívtaoptimízacíârobočihrežimívmagnítoplazmovogokompresora AT byrkaov harakteristikiplazmovihpotokívtaoptimízacíârobočihrežimívmagnítoplazmovogokompresora AT garkushaie harakteristikiplazmovihpotokívtaoptimízacíârobočihrežimívmagnítoplazmovogokompresora AT ladyginams harakteristikiplazmovihpotokívtaoptimízacíârobočihrežimívmagnítoplazmovogokompresora AT marchenkoak harakteristikiplazmovihpotokívtaoptimízacíârobočihrežimívmagnítoplazmovogokompresora AT petrovyuv harakteristikiplazmovihpotokívtaoptimízacíârobočihrežimívmagnítoplazmovogokompresora AT solyakovdg harakteristikiplazmovihpotokívtaoptimízacíârobočihrežimívmagnítoplazmovogokompresora AT chebotarevvv harakteristikiplazmovihpotokívtaoptimízacíârobočihrežimívmagnítoplazmovogokompresora AT chuviloaa harakteristikiplazmovihpotokívtaoptimízacíârobočihrežimívmagnítoplazmovogokompresora AT banduraan harakteristikiplazmennyhpotokovioptimizaciârabočihrežimovmagnitoplazmennogokompressora AT byrkaov harakteristikiplazmennyhpotokovioptimizaciârabočihrežimovmagnitoplazmennogokompressora AT garkushaie harakteristikiplazmennyhpotokovioptimizaciârabočihrežimovmagnitoplazmennogokompressora AT ladyginams harakteristikiplazmennyhpotokovioptimizaciârabočihrežimovmagnitoplazmennogokompressora AT marchenkoak harakteristikiplazmennyhpotokovioptimizaciârabočihrežimovmagnitoplazmennogokompressora AT petrovyuv harakteristikiplazmennyhpotokovioptimizaciârabočihrežimovmagnitoplazmennogokompressora AT solyakovdg harakteristikiplazmennyhpotokovioptimizaciârabočihrežimovmagnitoplazmennogokompressora AT chebotarevvv harakteristikiplazmennyhpotokovioptimizaciârabočihrežimovmagnitoplazmennogokompressora AT chuviloaa harakteristikiplazmennyhpotokovioptimizaciârabočihrežimovmagnitoplazmennogokompressora |
| first_indexed |
2025-11-25T20:39:30Z |
| last_indexed |
2025-11-25T20:39:30Z |
| _version_ |
1850525793775517696 |
| fulltext |
68 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2011. № 1.
Series: Plasma Physics (17), p. 68-70.
CHARACTERISTICS OF PLASMA STREAMS AND OPTIMIZATION
OF OPERATIONAL REGIMES FOR MAGNETOPLASMA COMPRESSOR
A.N. Bandura, O.V. Byrka, I.E. Garkusha, M.S. Ladygina, A.K. Marchenko,
Yu.V. Petrov, D.G. Solyakov, V.V. Chebotarev, A.A. Chuvilo*
Institute of Plasma Physics, NSC “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine;
*V.N. Karazin Kharkov National University, Kharkov, Ukraine
The main objective of these studies is characterization of dense xenon plasma streams generated by magnetoplasma
compressor (MPC) in different operational regimes. Optimization of plasma compression in MPC allows increase of the
plasma stream pressure up to 22…25 bar, average temperature of electrons of 10…20 eV and plasma stream velocity
varied in the range of (2…9)×106 cm/s depending on operation regime. Spectroscopy measurements demonstrate that in
these conditions most of Xe spectral lines are reabsorbed. In the case of known optical thickness, the real value of
electron density can be calculated with accounting self-absorption. Estimations of optical thickness were performed and
resulting electron density in focus region was evaluated as 1018 cm-3.
PACS: 52.30.-q; 52.30.Cv
INTRODUCTION
Experimental investigations of high-energy plasma
streams present considerable interest for different
practical applications, such as surface modification by
pulsed plasma processing, deposition of different
coatings, development of powerful radiation sources in
various wavelength ranges. The plasma compression zone
that is formed in different pinching discharges is a source
of intensive electron and ion beams, neutrons, hard X-ray
and EUV radiation.
In this paper experimental studies of magnetoplasma
compressor (MPC) operating with Xe and He gases are
presented and characteristics of dense plasma are
discussed. Measurements of plasma parameters, e.g. spatial
and temporal distributions of plasma stream density,
plasma pressure distributions, temperature and velocity
provide detailed information about dynamics of plasma
streams and features of plasma compression. These
characteristics are important from the point of view
optimization of MPC operation regimes in lithography
oriented applications, i.e. for achievement of maximal
intensity of EUV radiation in the characteristic wavelength
of 13.5 nm, corresponding to tenfold ionized Xe.
EXPERIMENTAL SETUP
Magnetoplasma compressor MPC is described in
details in [1]. The outer electrode has solid cylindrical
part and also output rod structure including 12 copper
rods with diameter of 10 mm and length of 147 mm. The
central electrode consists of the cylindrical part 60 mm in
diameter and 208 mm in length. Pulsed injection of
working gas is realized with fast electro-dynamical valve
through number of holes in the inner electrode. The power
supply of MPC discharge and gas valve comes from
capacitor banks. The capacity of discharge power supply
system is 90 μF and the operation voltage is up to 30 kV.
The power supply battery of gas valve has capacity of
700 μF and the working voltage up to 5 kV.
Mainly, xenon was used as working gas.
Measurements were carried out at discharge voltage of
20 kV for two different operation regimes with time
delays between the gas injection start and discharge
ignition τ=500 μs and τ=550 μs respectively.
ANALYSIS OF SPECTRAL LINES
SELF-ABSORPTION
One of the key effects, which may influence on the
accuracy of plasma density measurements by broadening
spectral lines, is effect of spectral lines self-absorption.
Calculations of electron density taking into account self-
absorption effect can be made if the plasma thickness is
known.
The consideration of optical spectra emitted from
MPC compression zone showed that the most of xenon
spectral lines are self-absorbed (except some lines with
low intensity). This phenomenon may introduce
significant errors at Ne determination, namely the density
value is usually increased. Therefore, in this case plasma
parameters measurements were carried out using contours
and intensities of spectral lines both with taking into
account self-absorption and without it applying following
comparison of obtained results. Electron density in
plasma can be estimated using self-absorbed line contour
for known value of optical thickness as self-absorption
parameter [2].
Two methods have been used for determination of
optical thickness. First method has been applied when
optical thickness value was not very large and it was
possible to use the spectral lines belonging to one
multiplet, i.e. when all characteristic values for the lines
(excitation energy, transition energy, terms and etc.) are
the same. With variation of the absorptive atoms
concentration or plasma column length the lines
intensities within one multiplet must be changed on the
same value. This value is product of g×f (g – statistical
weight, f – oscillator force) what is proportional to line
intensity [3]. So the ratio of g×f (theoretical) and the ratio
of observed lines intensities (experimental) are equal for
spectral lines without self-absorption, otherwise
investigated lines are reabsorbed. Using the equation (1)
one possible to find dependencies of g×f product from
optical thickness ratio:
α
τ
τ
λατ −
−
−
−
=
e
ed
1
1),,( , (1)
where α=(gf)1/(gf)2. Obtained results for majority of
spectral lines are indicated in the Table below.
69
Optical thickness for XeII and XeIII spectral lines in
regimes with time delays of τ =500 and 550 μs
λ, nm τ (500 μs) τ (550 μs)
Xe II 529.2 10 18
533.9 3 4.5
460.3 3.2 5
433.0 <1 <1
XeIII 392.2 3.2 3.6
395.0 3.16 3.5
Second method consists in determination of optical
thickness using experimentally measured lines intensities.
Lorenz (Stark) half-width of the line was found from the
experimental shape of spectral lines, using the Foigt
functions.
Performed analysis has shown that we are dealing
with mixed line-contour with predominant Lorentz effect.
Corresponding dependencies for both Lorentz and
Doppler contours were obtained (Fig. 1) using following
equations for optical thickness:
( ) 1
1
2ln
−
⎟
⎠
⎞
⎜
⎝
⎛
+
=
Δ
Δ
=Δ
−τ
ττ
λ
λ
λ
e
o
Lm
L , (2)
⎟
⎟
⎟
⎟
⎠
⎞
⎜
⎜
⎜
⎜
⎝
⎛
⎟
⎠
⎞
⎜
⎝
⎛
+
⋅=
Δ
Δ
=Δ
−τ
τ
λ
λλ
e
o
mD
D
1
2ln
ln
2ln
1
, (3)
where ∆λmL and ∆λmD – measured Lorentz and Doppler
widths correspondingly (Ǻ); ∆λo – line width for optically
thin layer, i.e. calculated with theoretical data (Ǻ); τ –
optical thickness. Using these equations value of optical
thickness was found for Stark contour. Electron density
was estimated using ∆λo. This method is suitable for large
values of optical thickness then distortion of spectral lines
shape is large.
Fig.1. Optical thickness determination using Stark
or Doppler contours
PLASMA DENSITY MEASUREMENTS
Electron density was calculated using Stark
broadening of Xe II and Xe III spectral lines. Stark widths
for Xe II lines are available in [4] and for Xe III – in [5].
Electron density average value for both time delays are
practically the same and equal to 1×1017 cm-3. The plasma
parameters in compression zone were calculated from
self-absorbed spectral lines and they are in a good
agreement with corresponding characteristics obtained for
line-contours without re-absorption. It is found that
maximal xenon plasma concentration in compression
zone can achieve 1018 cm-3. It is estimated also that due to
the re-absorption phenomenon the real Ne magnitude can
be increased on 20…30%.
PLASMA PRESSURE MEASUREMENTS
Several movable small-size piezoelectric detectors
were designed and manufactured for plasma pressure
measurements. All detectors were calibrated for absolute
measurements [6]. The radial distribution of plasma
stream pressure was measured at two different distances –
10 and 20 cm from the MPC output. The results of these
measurements are shown in Figs. 2, 3. Plasma stream has
good symmetry and the pressure at distance 10 cm from
MPC output is achieved 22 and 17 bars for operation
modes with time delays 500 and 550 μs correspondingly
(see Fig. 2). Average plasma stream diameter, calculated
as half width of plasma pressure radial distribution, is
equal to 20…25 mm. At the same time it is seen that in
near axis region with typical diameter of about 1 cm, the
plasma pressure is not changed and this region with
maximal pressure can be considered as effective plasma
stream diameter at the output of compression zone.
Fig. 2. Radial distributions of plasma pressure at the
distance of 10 cm from MPC output
Fig. 3. Radial distributions of plasma stream pressure at
the distance of 20 cm from MPC output
At the distance of 20 cm from the MPC output the
plasma stream pressure decreases to 8 bars for time delay
of 500 μs and to 11 bars for time delay of 550 μs
(see Fig. 3). It is interesting that pressure peak is observed
in near axis region for regime with time delay of 550 μs.
At the same time pressure plateau in near axis region is
observed for MPC mode of operation with time delay of
70
500 μs. It can be indication of changing position of
compression zone in different operation regimes.
Average plasma stream diameter, estimated as half
width of plasma pressure radial distribution, is increased
to 3 cm for operation mode with time delay of 500 μs and
to 4…4.5 cm for time delay of 550 μs.
TEMPERATURE MEASUREMENTS
Calculations were performed for xenon ions (with
different ionization state) in the framework of Saha-
Boltzman combined equations at local thermodynamic
equilibrium (LTE) approximation. The analysis of its
applicability is carried out using well known Griem
criterion. Such analysis is especially desirable taking into
account important temperature measurements. Time and
chord averaged electron temperature determined using the
ratio of XeII/XeIII lines intensities is 4…4.3 eV. From
theoretical Saha-Boltzman calculations it was estimated
that XeIV and XeV species, which observed in the
spectra, must be registered at electron temperature ~
10…20 eV (Ne~1018 cm-3). It was obtained that at ∆t =
550 μs these spectral lines were more intensive than in
other working regime.
PLASMA STREAM VELOCITY
Plasma stream velocity was calculated using plasma
pressure and electron density. Minimum velocity was in
central area of plasma flow and it was equal to
(9×105)…(1.5×106) cm/s in regime with 500 μs time
delay. The velocity of plasma bunch is spreading grew
with shift from the axis of plasma stream and it had value
about (2…3)×106 cm/s. For time delay of 550 μs, the
distributions of plasma stream velocity showed opposite
tendency. Maximum value of velocity up to
(6…9)×106 cm/s was measured in near axis region of
plasma stream. This value is in 2–3 times higher than
velocity of peripheral parts of plasma stream
((2…4)×106 cm/s).
CONCLUSIONS
Characterization of dense xenon plasma streams
generated by magnetoplasma compressor in different
operational regimes has been performed. Optimization of
plasma compression in MPC allows increase of the
plasma stream pressure up to 22…25 bar. Measured
plasma core diameter is about 1 cm. Depending on
operation regime the plasma stream velocity is varied in
the range of (2…9)×106 cm/s.
Maximal plasma stream density measured from
xenon spectral lines with taking into account self
absorption is about (1…2)×1018 cm-3. Presence of Xe IV
and XeV spectral lines in spectra allows us to expect that
electron temperature in compression zone riches
10…20 eV.
Analysis of the obtained results has shown that at
time delay between gas puff and discharge ignition
τ = 550 μs it is observed more pronounced accelerating
character of plasma flow, while at τ = 500 μs stronger
compression effects are observed.
REFERENCES
1. V.V. Chebotarev, et al. // Problems of Atomic Science and
Technology. Series “Plasma Physics” (13). 2007, N 1,
p. 104-106.
2. Ya.F. Volkov, et al.// Journal of Applied Spectroscopy.
1992, v. 56, N3, p. 451-455 (in Russian).
3. Plasma Diagnostics / Ed. W. Lochte-Holtgreven.
Moscow: “Mir”, 1976, p. 97-131, 311-316 (Russ. Transl.).
4. L.C. Popovic, M.S. Dimitrijevic // Stark broadening of
XeII lines, Astron. Astrophys. Suppl. Ser.116. 1996,
p. 359-365.
5. D. Iriate, et al. Stark widths and oscillator strengths of Xe
III lines // Physica Scripta. 1997, v. 55, p. 181-184.
6. A.N. Bandura, et al. // Physica Scripta. 2006, v. 73, p. 84.
Article received 20.12.10
ХАРАКТЕРИСТИКИ ПЛАЗМЕННЫХ ПОТОКОВ И ОПТИМИЗАЦИЯ РАБОЧИХ РЕЖИМОВ
МАГНИТОПЛАЗМЕННОГО КОМПРЕССОРА
A.Н. Бандура, O.В. Бырка, И.E. Гаркуша, M.С. Ладыгина, A.K. Maрченко, Ю.В. Петров,
Д.Г. Соляков, В.В.Чеботарев, А.А. Чувило
Проведены эксперименты по оптимизации режимов работы МПК, измерены параметры плазменных
потоков при работе на ксеноне. Проанализированы распределения давления в плазменном потоке, скорость и
температура плазмы. Спектроскопические измерения показали, что большинство спектральных линий ксенона
самопоглощены. В случае известной оптической толщины реальная электронная плотность может быть
вычислена с учетом эффекта самопоглощения. Проведены оценки оптической толщины, в результате чего
рассчитано значение концентрации электронов в области компрессии – 1018 см-3.
ХАРАКТЕРИСТИКИ ПЛАЗМОВИХ ПОТОКІВ ТА ОПТИМІЗАЦІЯ РОБОЧИХ РЕЖИМІВ
МАГНІТОПЛАЗМОВОГО КОМПРЕСОРА
A.М. Бандура, O.В. Бирка, І.Є. Гаркуша, M.С. Ладигіна, Г.K. Maрченко, Ю.В. Петров,
Д.Г. Соляков, В.В.Чеботарьов, О.О. Чувіло
Проведено експерименти з оптимізації режимів роботи МПК та виміряно параметри плазмових потоків при
роботі на ксеноні. Проаналізовано розподіли тиску в плазмовому потоці, швидкість та температура плазми.
Спектроскопічні вимірювання показали, що більшість спектральних ліній ксенону самопоглинені. У випадку
відомої оптичної товщини, реальна електронна густина може бути обчислена з урахуванням ефекту
самопоглинання. Були проведені оцінки оптичної товщини, в результаті чого розрахована величина
концентрації електронів в області компресії – 1018 см-3.
|