Plasma reforming of ethanol in DGCLW discharge
This paper presents the results of experimental and theoretical investigations of the process of non-thermal plasmaassisted reforming of aqueous ethanol solutions in the dynamic plasma liquid systems using the DC electric discharges in a gas channel with liquid wall. The experiments show possibili...
Gespeichert in:
| Veröffentlicht in: | Вопросы атомной науки и техники |
|---|---|
| Datum: | 2011 |
| Hauptverfasser: | , , , , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2011
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/90889 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Plasma reforming of ethanol in DGCLW discharge / V.V. Yukhymenko, V.Ya. Chernyak, S.V. Olszewski, S.M. Sidoruk, V.P. Demchina, D.S. Levko, A.I. Shchedrin // Вопросы атомной науки и техники. — 2011. — № 1. — С. 101-103. — Бібліогр.: 3 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-90889 |
|---|---|
| record_format |
dspace |
| spelling |
Yukhymenko, V.V. Chernyak, V.Ya. Olszewski, S.V. Sidoruk, S.M. Demchina, V.P. Levko, D.S. Shchedrin, A.I. 2016-01-05T18:22:06Z 2016-01-05T18:22:06Z 2011 Plasma reforming of ethanol in DGCLW discharge / V.V. Yukhymenko, V.Ya. Chernyak, S.V. Olszewski, S.M. Sidoruk, V.P. Demchina, D.S. Levko, A.I. Shchedrin // Вопросы атомной науки и техники. — 2011. — № 1. — С. 101-103. — Бібліогр.: 3 назв. — англ. 1562-6016 PACS: 52.50.Dg https://nasplib.isofts.kiev.ua/handle/123456789/90889 This paper presents the results of experimental and theoretical investigations of the process of non-thermal plasmaassisted reforming of aqueous ethanol solutions in the dynamic plasma liquid systems using the DC electric discharges in a gas channel with liquid wall. The experiments show possibilities and efficiency of low-temperature plasmachemical conversion of liquid ethanol into hydrogen-rich synthesis gas in different regimes. The numerical modelling clarifies the nature and explains the kinetic mechanisms of non-equilibrium plasma-chemical transformations in the plasma-liquid systems in different modes. Представлено результати експериментальних та теоретичних досліджень процесів нетермічного реформінгу, що підтримується плазмою, водних розчинів етанолу в динамічній плазмово-рідинній системі з використанням електричного розряду постійного струму в газовому каналі з рідкою стінкою (РГКРС). Експерименти показують можливість та ефективність низькотемпературної плазмохімічної конверсії рідкого етанолу в збагачений воднем синтез-газ в різних режимах. Чисельне моделювання висвітлює природу та пояснює кінетичні механізми нерівноважних плазмохімічних перетворень в плазмово-рідинній системі в різних режимах. Представлены результаты экспериментальных и теоретических исследований процессов нетермического реформинга, поддерживаемого плазмой, водных растворов этанола в динамической плазменно-жидкостной системе с использованием электрического разряда постоянного тока в газовом канале с жидкой стенкой (РГКЖС). Эксперименты показывают возможность и эффективность низкотемпературной плазмохимической конверсии жидкого этанола в обогащенный водородом синтез-газ в разных режимах. Численное моделирование показывает природу и объясняет кинетические механизмы неравновесных плазмохимических преобразований в плазменно-жидкостной системе в разных режимах. This work was partially supported by the STCU Grant P-354 (EOARD 0880001), National Taras ShevchenkoUniversity of Kyiv, National Academy of Sciences of Ukraine. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Низкотемпературная плазма и плазменные технологии Plasma reforming of ethanol in DGCLW discharge Плазмовий реформінг етанолу в РГКРС розряді Плазменный реформинг этанола в РГКЖС разряде Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Plasma reforming of ethanol in DGCLW discharge |
| spellingShingle |
Plasma reforming of ethanol in DGCLW discharge Yukhymenko, V.V. Chernyak, V.Ya. Olszewski, S.V. Sidoruk, S.M. Demchina, V.P. Levko, D.S. Shchedrin, A.I. Низкотемпературная плазма и плазменные технологии |
| title_short |
Plasma reforming of ethanol in DGCLW discharge |
| title_full |
Plasma reforming of ethanol in DGCLW discharge |
| title_fullStr |
Plasma reforming of ethanol in DGCLW discharge |
| title_full_unstemmed |
Plasma reforming of ethanol in DGCLW discharge |
| title_sort |
plasma reforming of ethanol in dgclw discharge |
| author |
Yukhymenko, V.V. Chernyak, V.Ya. Olszewski, S.V. Sidoruk, S.M. Demchina, V.P. Levko, D.S. Shchedrin, A.I. |
| author_facet |
Yukhymenko, V.V. Chernyak, V.Ya. Olszewski, S.V. Sidoruk, S.M. Demchina, V.P. Levko, D.S. Shchedrin, A.I. |
| topic |
Низкотемпературная плазма и плазменные технологии |
| topic_facet |
Низкотемпературная плазма и плазменные технологии |
| publishDate |
2011 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Плазмовий реформінг етанолу в РГКРС розряді Плазменный реформинг этанола в РГКЖС разряде |
| description |
This paper presents the results of experimental and theoretical investigations of the process of non-thermal plasmaassisted
reforming of aqueous ethanol solutions in the dynamic plasma liquid systems using the DC electric discharges
in a gas channel with liquid wall. The experiments show possibilities and efficiency of low-temperature plasmachemical
conversion of liquid ethanol into hydrogen-rich synthesis gas in different regimes. The numerical modelling
clarifies the nature and explains the kinetic mechanisms of non-equilibrium plasma-chemical transformations in the
plasma-liquid systems in different modes.
Представлено результати експериментальних та теоретичних досліджень процесів нетермічного реформінгу,
що підтримується плазмою, водних розчинів етанолу в динамічній плазмово-рідинній системі з використанням
електричного розряду постійного струму в газовому каналі з рідкою стінкою (РГКРС). Експерименти
показують можливість та ефективність низькотемпературної плазмохімічної конверсії рідкого етанолу в
збагачений воднем синтез-газ в різних режимах. Чисельне моделювання висвітлює природу та пояснює
кінетичні механізми нерівноважних плазмохімічних перетворень в плазмово-рідинній системі в різних
режимах.
Представлены результаты экспериментальных и теоретических исследований процессов нетермического
реформинга, поддерживаемого плазмой, водных растворов этанола в динамической плазменно-жидкостной
системе с использованием электрического разряда постоянного тока в газовом канале с жидкой стенкой
(РГКЖС). Эксперименты показывают возможность и эффективность низкотемпературной плазмохимической
конверсии жидкого этанола в обогащенный водородом синтез-газ в разных режимах. Численное моделирование
показывает природу и объясняет кинетические механизмы неравновесных плазмохимических преобразований в
плазменно-жидкостной системе в разных режимах.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/90889 |
| citation_txt |
Plasma reforming of ethanol in DGCLW discharge / V.V. Yukhymenko, V.Ya. Chernyak, S.V. Olszewski, S.M. Sidoruk, V.P. Demchina, D.S. Levko, A.I. Shchedrin // Вопросы атомной науки и техники. — 2011. — № 1. — С. 101-103. — Бібліогр.: 3 назв. — англ. |
| work_keys_str_mv |
AT yukhymenkovv plasmareformingofethanolindgclwdischarge AT chernyakvya plasmareformingofethanolindgclwdischarge AT olszewskisv plasmareformingofethanolindgclwdischarge AT sidoruksm plasmareformingofethanolindgclwdischarge AT demchinavp plasmareformingofethanolindgclwdischarge AT levkods plasmareformingofethanolindgclwdischarge AT shchedrinai plasmareformingofethanolindgclwdischarge AT yukhymenkovv plazmoviireformíngetanoluvrgkrsrozrâdí AT chernyakvya plazmoviireformíngetanoluvrgkrsrozrâdí AT olszewskisv plazmoviireformíngetanoluvrgkrsrozrâdí AT sidoruksm plazmoviireformíngetanoluvrgkrsrozrâdí AT demchinavp plazmoviireformíngetanoluvrgkrsrozrâdí AT levkods plazmoviireformíngetanoluvrgkrsrozrâdí AT shchedrinai plazmoviireformíngetanoluvrgkrsrozrâdí AT yukhymenkovv plazmennyireformingétanolavrgkžsrazrâde AT chernyakvya plazmennyireformingétanolavrgkžsrazrâde AT olszewskisv plazmennyireformingétanolavrgkžsrazrâde AT sidoruksm plazmennyireformingétanolavrgkžsrazrâde AT demchinavp plazmennyireformingétanolavrgkžsrazrâde AT levkods plazmennyireformingétanolavrgkžsrazrâde AT shchedrinai plazmennyireformingétanolavrgkžsrazrâde |
| first_indexed |
2025-11-25T23:26:47Z |
| last_indexed |
2025-11-25T23:26:47Z |
| _version_ |
1850580665241698304 |
| fulltext |
PLASMA REFORMING OF ETHANOL IN DGCLW DISCHARGE
V.V. Yukhymenko1, V.Ya. Chernyak1, S.V. Olszewski1, S.M. Sidoruk1,
V.P. Demchina2, D.S. Levko3, A.I. Shchedrin3
1 Taras Shevchenko Kiev National University, Faculty of Radiophysics,
Department of Physical Electronics, Kiev, Ukraine;
2Institute of Gas, National Academy of Sciences of Ukraine, Kiev, Ukraine;
3Institute of Physics, National Academy of Sciences of Ukraine, Kiev, Ukraine
E-mail: yvitaliy@ukr.net; ashched@iop.kiev.ua
This paper presents the results of experimental and theoretical investigations of the process of non-thermal plasma-
assisted reforming of aqueous ethanol solutions in the dynamic plasma liquid systems using the DC electric discharges
in a gas channel with liquid wall. The experiments show possibilities and efficiency of low-temperature plasma-
chemical conversion of liquid ethanol into hydrogen-rich synthesis gas in different regimes. The numerical modelling
clarifies the nature and explains the kinetic mechanisms of non-equilibrium plasma-chemical transformations in the
plasma-liquid systems in different modes.
PACS: 52.50.Dg
1. INTRODUCTION
From physics and chemistry of fuel combustion it is
known that addition of light inflammable gases (H2, CO)
essentially improves ignition/combustion of heavy oil and
bio-fuels [1]. Therefore hydrogen is considered as one of
the most prospective energy sources for the future that
can be renewable, ecologically clean and environmentally
safe [2]. Among possible technologies for free hydrogen
production, including steam reforming and partial
oxidation of bio-fuels, a low-temperature plasma-assisted
fuel reforming is believed to be a good alternative
approach. Although the plasma reforming process needs
some additional electric power, it has potential
advantages: fast start-up, easy control, cooking reliability,
compact design, etc provide good perspectives in its
applications in aerospace technologies. For plasma fuel
reforming, various methods using thermal and non-
thermal plasma are known. Availability of use of low-
temperature plasma is connected with possibility of
reduction power inputs on overcoming level of the
activations chemical reaction in condition of direct
excitement oscillatory and rotational level of molecules.
Such mechanism is more effective, than heating, for
activation of chemical reaction [3]. One of the potential
sources of non-thermal plasma that can provide
simultaneously a high level of non-equilibrium and high
density of reacting species in the plasma-liquid system is
the electric discharge in a flowing gas channel with liquid
wall (DGCLW). The main idea is that DGCLW can be
burning directly within the liquid hydrocarbon fuels
without preliminary gasification. Another pecularity is
that DGCLW can work in the bubbling microporous
liquid which has a very large ratio of the plasma-liquid
contact surface to the plasma volume.
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOG
Series: Plasma Physics (17), p. 101-103.
Fig. 1. Experimental set-up for conversion of ethanol
in synthesis – gas
Air
Y. 2011. № 1. 101
The objective of this work is to develop and to study
new methods of low-temperature plasma-enhanced
reforming of liquid hydrocarbon fuels for applications in
prospective plasma-assisted aerospace combustion
technologies.
2. EXPERIMENTAL SET-UP
Experimental set-up for conversion of ethanol in
synthesis – gas is shown on Fig. 1. It consists of a
cylindrical quartz test-vessel (1) sealed at the top and at the
bottom by duralumin flanges (2) with a built-in electrode
system (3). The cooper rod electrodes (3) were inserted into
the quarts tubes (4) and installed coaxially one opposite
other. The tubes (4) served also for the gas (air) inlet. A
compressed atmospheric air was injected along electrodes
(3) through the open nozzle ends (4) and formed a stable
counter-flow gas channel surrounding by liquid ethanol (6).
The electric discharge (5) was burned in the gas channel
between the immersed electrodes where an electric
breakdown occurred. The ethanol/water solution (5 mole of
ethanol : 1 mole of water) was filled into the reactor
through the drain pipe (7) at the bottom flange. The outlet
connections (8) and (9) at the top flange were connected
with a system of communicating vessels allowing control
of the liquid level and pressure in the reactor.
Outlet of gas
4
H2O
Inlet
8
9
4
7
2
6
1
5
3
Air
2
10
H2O
Outlet
Т, °С
mailto:yvitaliy@ukr.net
The outlet pipe (9) served for transportation of the
synthesis gas products from the reactor to the condensing
vessel and further to the gas analysis. Because of the
electric-discharge heat release and heating of plasma-
treated solution in the reactor, an auxiliary cooling was
provided by the water-cooled jacket (10). The temperature
of work solution in the reactor was measured by the
immersed thermocouple.
The mass-spectrometric and gas chromatography
techniques for investigation of stable gas-phase
conversion products were used. The monopole mass-
spectrometer was used for the mass analysis.
Various modes of the operation of the setup were
studied: the mode where the voltage was applied to the
electrodes mounted into the lower and upper flanges (the
discharge was initiated between them); the mode where
“+” was applied to the electrode mounted into the lower
flange, whereas “–” was applied to the liquid (“liquid”
cathode mode); the mode where “–” was applied to the
electrode mounted into the lower flange, while “+” was
applied to the liquid (“liquid” anode mode).
3. RESULTS AND DISCUSSIONS
The impact of the plasma-forming gas on the ethanol
reforming in the DGCLW was studied. For that, the
composition of gas-phase products of conversion in the
reactor and the coefficient of energy transformation were
studied at different gas flow rates. Research was
conducted for the mode of solid electrodes. The
composition and mixture ratio under the ethanol
reforming was (5 mole of ethanol : 1 mole of water). The
discharge current varied between 100 and 400 mA, the air
flow rate varied from 0 to 110 cm3/s.
102
The results for discharge current I= 100 mA
demonstrates a good matching between gas
chromatography and mass-spectrometry data. For other
currents the same matching is observed. It should be
noted that with increasing air supply in the discharge the
concentration of H2 in syngas products decreases. In fact,
the highest yield of H2 is observed in the discharge mode
without air supply. But the time of H2 production in this
case increases considerably, and the power consumption
also increases. All this reduces the coefficient of energy
transformation (Fig. 2). Moreover, this decreases the
lifetime of the system. Therefore, the total system
performance without air supply seems to be not very good
processing in the PLS with the DGCLW.
Fig. 3 shows the results of experiments and numerical
modeling of concentrations of H2, CO2 and other main
stable components in output gas products after the ethanol
processing in the PLS with the DGCLW. The qualitative
and quantitative agreement between calculated and
measured data is quite good, at least, for main
components. One can see that the output concentration
[H2] grows linearly with the discharge current and it
reduces exponentially with the gas flow rate.
In the discharge conditions, the kinetics of the H2
formation is determined mainly by the reaction
C2H5OH + H → CH3CH2O + H2.
Since the ethanol concentration [C2H5OH] in solution
changes slowly, the [H2] production is determined entirely
by the concentration of atomic hydrogen [H].
In the case under consideration, the main process
responsible for the generation of H is the dissociation of
water molecules H2O by the direct electron impact.
The rate of this process is proportional to the specific
electric power deposited to discharge (i.e., discharge
Fig. 2. Coefficient of energy transformation of the
ethanol processing in the DGCLW as function of air flow
rate. Ethanol-water solution (5/1), Id= 100 mA, solid
electrodes
0
0,4
0,8
1,2
1,6
2
0 20 40 60 80 100 120 140
G, cm3/s
α
a
Fig. 3. The results of experiments(a) and
numerical modeling (b) of concentrations of H2,
CO2 and other main stable components in output
gas products after the ethanol reforming, solid
electrodes
b
103
current). Therefore, the [H2] production is also a linear
function of the discharge current in accordance with
experimental data. Outside the discharge, the only process
that influences the H2 concentration is the water-gas shift
reaction
CO + H2O → H2 + CO2.
Via this process, the system reaches the complete
conversion of CO into CO2 and H2.
4. CONCLUSIONS
The dynamic plasma-liquid system with the electric
discharge in a gas channel with liquid wall is quite
efficient in plasma-chemical reforming of liquid ethanol
into synthesis gas.
The composition content of syngas and the power
inputs on the ethanol conversion in the DGCLW
discharge depends on the initial gas that forms the plasma
and on the ethanol-water ratio in the solution.
The kinetic plasma-chemical modeling is in a fairly
good agreement with experimental data, at least, for the
main syngas components, H2 and CO, predicting a non-
thermal plasma-chemical mechanism of the ethanol
conversion in the investigated plasma-liquid system.
The numerical plasma-chemical kinetic modeling of
the plasma conversion of ethanol into hydrogen in the
DGCLW with the liquid electrode allowed understanding
the peculiarities and regularities of the processing in
different regimes and conditions. It is found that the
polarity of electrodes does not influence on the H2 yield
in the case when the work liquid is ethanol because the
concentration of H2 produced in the discharge in the
mixture of air-ethanol vapors is many times larger than
due to the electrolysis.
ACKNOWLEDGEMENTS
This work was partially supported by the STCU Grant P-
354 (EOARD 0880001), National Taras Shevchenko
University of Kyiv, National Academy of Sciences of
Ukraine.
REFERENCES
1. J. Warnatz, U. Maas, R.W. Dibble. Combustion. Berlin:
“Springer”, 2001.
2. 18th World Hydrogen Energy Conf. 2010, Essen,
Germany. http://www.whec2010.com
3. Z. Machala, M. Morvova, E. Marode, I. Morva.
Removal of cyclohexanone in transition electric
discharge at atmospheric pressure// Journ. Phys. D:
Appl. Phys. 2000, v. 33, р. 3198-3213.
Article received 11.10.10
ПЛАЗМЕННЫЙ РЕФОРМИНГ ЭТАНОЛА В РГКЖС РАЗРЯДЕ
В.В. Юхименко, В.Я. Черняк, С.В. Ольшевский, С.М. Сидорук, В.П. Демчина, Д.С. Левко, A.И. Щедрин
Представлены результаты экспериментальных и теоретических исследований процессов нетермического
реформинга, поддерживаемого плазмой, водных растворов этанола в динамической плазменно-жидкостной
системе с использованием электрического разряда постоянного тока в газовом канале с жидкой стенкой
(РГКЖС). Эксперименты показывают возможность и эффективность низкотемпературной плазмохимической
конверсии жидкого этанола в обогащенный водородом синтез-газ в разных режимах. Численное моделирование
показывает природу и объясняет кинетические механизмы неравновесных плазмохимических преобразований в
плазменно-жидкостной системе в разных режимах.
ПЛАЗМОВИЙ РЕФОРМІНГ ЕТАНОЛУ В РГКРС РОЗРЯДІ
В.В. Юхименко, В.Я. Черняк, С.В. Ольшевський, С.М. Сидорук, В.П. Демчина, Д.С. Левко, A.І. Щедрін
Представлено результати експериментальних та теоретичних досліджень процесів нетермічного реформінгу,
що підтримується плазмою, водних розчинів етанолу в динамічній плазмово-рідинній системі з використанням
електричного розряду постійного струму в газовому каналі з рідкою стінкою (РГКРС). Експерименти
показують можливість та ефективність низькотемпературної плазмохімічної конверсії рідкого етанолу в
збагачений воднем синтез-газ в різних режимах. Чисельне моделювання висвітлює природу та пояснює
кінетичні механізми нерівноважних плазмохімічних перетворень в плазмово-рідинній системі в різних
режимах.
http://www.whec2010.com/
|