Optimization of the plasma electrostatic filter using Taguchi method
We investigated the flow of carbon and metal vacuum arc plasma, produced in DC discharge with superimposed high-current arc pulses, through the electrostatic filter. The dependence of the filtering efficiency and the ion current of the plasma flow on the filter current, gas pressure, distance and...
Збережено в:
| Опубліковано в: : | Вопросы атомной науки и техники |
|---|---|
| Дата: | 2011 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2011
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/90954 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Optimization of the plasma electrostatic filter using Taguchi method / V. Zavaleyev, J. Walkowicz // Вопросы атомной науки и техники. — 2011. — № 1. — С. 149-151. — Бібліогр.: 2 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-90954 |
|---|---|
| record_format |
dspace |
| spelling |
Zavaleyev, V. Walkowicz, J. 2016-01-06T12:02:12Z 2016-01-06T12:02:12Z 2011 Optimization of the plasma electrostatic filter using Taguchi method / V. Zavaleyev, J. Walkowicz // Вопросы атомной науки и техники. — 2011. — № 1. — С. 149-151. — Бібліогр.: 2 назв. — англ. 1562-6016 PACS: 81.15.Kk https://nasplib.isofts.kiev.ua/handle/123456789/90954 We investigated the flow of carbon and metal vacuum arc plasma, produced in DC discharge with superimposed high-current arc pulses, through the electrostatic filter. The dependence of the filtering efficiency and the ion current of the plasma flow on the filter current, gas pressure, distance and tilt angle of the filter blinds was determined. The plan of the experiment was developed using Taguchi method and the conditions, which guarantee maximal cleaning efficiency at maximal plasma transmission through the filter were determined. Досліджували проходження вуглецевої та металевої вакуумно-дугової плазми, яка генерується джерелом постійного струму з накладанням сильнострумних імпульсів на струм дуги крізь електростатичний фільтр. Було визначено залежності іонного струми та ефективність фільтрації плазмового потоку від струму на фільтрі, тиску газу, відстані та кута нахилу жалюзій фільтру. План експерименту був розроблений з використанням метода Тагучі, та були визначенні умови, які гарантують максимальному ефективність очищення при максимальному коефіцієнті пропускання плазми крізь фільтр. Исследовали прохождения углеродной и металлической вакуумно-дуговой плазмы, генерируемой источником постоянного тока с наложением сильноточных импульсов на ток дуги через электростатический фильтр. Были определены зависимости ионного токи и эффективность фильтрации плазменного потока от тока на фильтре, давления газа, расстояния и угла наклона жалюзей фильтра. План эксперимента был разработан с использованием метода Тагучи, и были определены условия, которые гарантируют максимальную эффективность очистки при максимальном коэффициенте пропускания плазмы через фильтр. This work was supported by the Operational Programme Innovative Economy POIG 2007-2013 within Developmental Project No. UDA-POIG.01.03.01-32-052/08-00: „Hybrid technologies for woodworking tools modification”. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Низкотемпературная плазма и плазменные технологии Optimization of the plasma electrostatic filter using Taguchi method Оптимізація роботи електростатичного фільтра плазми з використанням метода Тагучі Оптимизация работы электростатического фильтра плазмы с использованием метода Тагучи Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Optimization of the plasma electrostatic filter using Taguchi method |
| spellingShingle |
Optimization of the plasma electrostatic filter using Taguchi method Zavaleyev, V. Walkowicz, J. Низкотемпературная плазма и плазменные технологии |
| title_short |
Optimization of the plasma electrostatic filter using Taguchi method |
| title_full |
Optimization of the plasma electrostatic filter using Taguchi method |
| title_fullStr |
Optimization of the plasma electrostatic filter using Taguchi method |
| title_full_unstemmed |
Optimization of the plasma electrostatic filter using Taguchi method |
| title_sort |
optimization of the plasma electrostatic filter using taguchi method |
| author |
Zavaleyev, V. Walkowicz, J. |
| author_facet |
Zavaleyev, V. Walkowicz, J. |
| topic |
Низкотемпературная плазма и плазменные технологии |
| topic_facet |
Низкотемпературная плазма и плазменные технологии |
| publishDate |
2011 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Оптимізація роботи електростатичного фільтра плазми з використанням метода Тагучі Оптимизация работы электростатического фильтра плазмы с использованием метода Тагучи |
| description |
We investigated the flow of carbon and metal vacuum arc plasma, produced in DC discharge with superimposed
high-current arc pulses, through the electrostatic filter. The dependence of the filtering efficiency and the ion current of
the plasma flow on the filter current, gas pressure, distance and tilt angle of the filter blinds was determined. The plan of
the experiment was developed using Taguchi method and the conditions, which guarantee maximal cleaning efficiency
at maximal plasma transmission through the filter were determined.
Досліджували проходження вуглецевої та металевої вакуумно-дугової плазми, яка генерується джерелом постійного струму з накладанням сильнострумних імпульсів на струм дуги крізь електростатичний фільтр. Було визначено залежності іонного струми та ефективність фільтрації плазмового потоку від струму на фільтрі, тиску газу, відстані та кута нахилу жалюзій фільтру. План експерименту був розроблений з використанням метода Тагучі, та були визначенні умови, які гарантують максимальному ефективність очищення при максимальному коефіцієнті пропускання плазми крізь фільтр.
Исследовали прохождения углеродной и металлической вакуумно-дуговой плазмы, генерируемой источником постоянного тока с наложением сильноточных импульсов на ток дуги через электростатический фильтр. Были определены зависимости ионного токи и эффективность фильтрации плазменного потока от тока на фильтре, давления газа, расстояния и угла наклона жалюзей фильтра. План эксперимента был разработан с использованием метода Тагучи, и были определены условия, которые гарантируют максимальную эффективность очистки при максимальном коэффициенте пропускания плазмы через фильтр.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/90954 |
| citation_txt |
Optimization of the plasma electrostatic filter using Taguchi method / V. Zavaleyev, J. Walkowicz // Вопросы атомной науки и техники. — 2011. — № 1. — С. 149-151. — Бібліогр.: 2 назв. — англ. |
| work_keys_str_mv |
AT zavaleyevv optimizationoftheplasmaelectrostaticfilterusingtaguchimethod AT walkowiczj optimizationoftheplasmaelectrostaticfilterusingtaguchimethod AT zavaleyevv optimízacíârobotielektrostatičnogofílʹtraplazmizvikoristannâmmetodatagučí AT walkowiczj optimízacíârobotielektrostatičnogofílʹtraplazmizvikoristannâmmetodatagučí AT zavaleyevv optimizaciârabotyélektrostatičeskogofilʹtraplazmysispolʹzovaniemmetodataguči AT walkowiczj optimizaciârabotyélektrostatičeskogofilʹtraplazmysispolʹzovaniemmetodataguči |
| first_indexed |
2025-11-26T02:47:11Z |
| last_indexed |
2025-11-26T02:47:11Z |
| _version_ |
1850609281440677888 |
| fulltext |
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2011. 1. 149
Series: Plasma Physics (17), p. 149-151.
OPTIMIZATION OF THE PLASMA ELECTROSTATIC FILTER
USING TAGUCHI METHOD
V. Zavaleyev, J. Walkowicz
Institute of Mechatronics, Nanotechnology and Vacuum Technique,
Koszalin University of Technology, Koszalin, Poland
E-mail: viktor.zavaleyev@tu.koszalin.pl
We investigated the flow of carbon and metal vacuum arc plasma, produced in DC discharge with superimposed
high-current arc pulses, through the electrostatic filter. The dependence of the filtering efficiency and the ion current of
the plasma flow on the filter current, gas pressure, distance and tilt angle of the filter blinds was determined. The plan of
the experiment was developed using Taguchi method and the conditions, which guarantee maximal cleaning efficiency
at maximal plasma transmission through the filter were determined.
PACS: 81.15.Kk
1. INTRODUCTION
One of the drawbacks of the vacuum-arc method is the
presence in the plasma flow, and hence in the condensate,
a significant content of the microparticles. Progressive
development of the vacuum-arc method has led to new
methods of deposition, one of which is DC vacuum-arc
method with superimposed high-current arc pulses. Over
the past decades various designs of the plasma filter to
remove droplet phase from the plasma flows have been
developed. The most common design is a curved filter
with crossed electric and magnetic fields, providing the
most complete filtering of the plasma. The use of such a
construction of the filter is not always possible because of
the design features of the specific vacuum-arc device. In
our case, for cleaning plasma from the microdroplets, we
proposed the construction of an electrostatic filter.
Three versions of the linear Venetian blind filter [1]
were manufactured and investigated. Distances between
the lamellae and their tilt angles were selected in each
version so that there was no line of sight between the
cathode and the substrate. Another structural feature of
the developed constructions is the possibility to change
the position of the filters. Fixings of the filters are located
on two perpendicular sides, what allows to install a filter
either with vertical or horizontal position of the lamellae.
Moreover it is possible to apply in the experiments 1 to 3
filters with combined positions of lamellae (zigzag,
twisted, etc.).
2. EXPERIMENTAL TECHNIQUES
Experiments were performed on an industrial vacuum-
arc device C55CT made by the German company
INOVAP GmbH for the deposition of DLC coatings. The
cathodes (70 mm in diameter) were made from pure
titanium and pure carbon, arc currents of ITi = 100 A, and
IC = 50 A were applied, the duration of each deposition
experiment was t = 5 min. Without changing structural
features of the vacuum-arc device, instead of the arc
source shield and its rotary mechanism a water-cooled
rotary vacuum pass was installed, which holds the
electrostatic filter (Fig. 1). Three prototype filters were
produced in the form of a square frame of the size of
210 × 210 mm in which the lamellae were installed at
three distances between them of: 10, 15 and 20 mm.
a
b
Fig. 1. Experimental setting in the C55CT device:
a) view of the chamber interior, b) pictorial scheme;
1-electrostatic filter, 2-ion current collector,
3-investigated samples, 4-vacuum chamber
The lamellae were installed in each filter so that there was
no line of sight through the filter between the cathode and
the substrate. The filter was fed by a separate DC source.
The ion current and the efficiency of the plasma flow
cleaning from the droplet phase were measured using the
ion current collector of the size of 210 × 210 mm
(identical as the filter size). Three investigated samples
for each experiment were installed in the central
horizontal zone of the surface of the ion current collector.
As the substrates silicon wafers for carbon and glass
plates for titanium of the size of 20×20 mm were used.
During the experiment, a negative potential of (-100) V
was applied to the ion current collector, and the distance
between the collector surface and the cathode surface was
200 mm.
The measurement of the ion current was carried out
using CIE CA60 mA clamp-meter (OBIAT Pty Ltd
Australia). In the current measuring range of up to 60 A
mailto:viktor.zavaleyev@tu.koszalin.pl
150
AC/DC clamp-meter allows one to connect to any
multimeter. Number of microdroplets deposited on the
substrates was measured using metallographic microscope
ECLIPSE MA20 (Nikon Japan), the magnification of
500× was applied, and the area of microdroplets analysis
was 22728 m2 for all samples. The Taguchi method of
experiment design was applied [2], and the orthogonal
tables L9 of the size: P = 4 (number of parameters), L = 3
(number of parameter values) were used for both titanium
(Table 1) and carbon (Table 2). The experimental results
were processed according to the Taguchi’s procedure
using the program “STATISTICA” (StatSoft Polska).
Table 1. Experimental parameters for Ti
Parameter values
Optimized parameter
1 2 3
1 Arc frequency ARC [Hz] 0 50 100
2 Argon pressure pAr [Pa] 0,001 0,4 1
3 Lamella distance L [mm] 10 15 20
4 Current of filter Isepar. [A] 0 10 20
Table 2. Experimental parameters for C
Parameter values
Optimized parameter
1 2 3
1 Arc frequency ARC [Hz] 0 50 100
2 Argon pressure pAr [Pa] 0,01 0,1 1
3 Lamella distance L [mm] 10 15 20
4 Current of filter Isepar. [A] 0 10 20
3. RESULTS AND DISCUSSION
The diagrams in Fig. 2 show the results of calculations
of the dependence of the ion current on the process
parameters for titanium cathode.
Fig. 2. Diagrams of the dependence of the ion current for
titanium cathode on process parameters
The optimization criterion applied for the ion current was
“the higher the better”. As it is seen from the diagrams in
order to obtain maximum ion current, the experiment
should be carried out with the parameters: ARC = 50 Hz;
pAr = 0,4 Pa; L = 15 mm; Isepar. = 0 A (floating potential).
The diagrams in Fig. 3 show the results of calculations of
the dependence of cleaning efficiency of titanium plasma
from the microdroplets on the process parameters for
titanium cathode. In the calculations as the measure of
cleaning efficiency the ratio of the total surface of defects
to the analyzed substrate surface (22728 m2) was applied,
the optimization criterion applied was “the lower the
better”.
Fig. 3. Diagrams of the dependence of the cleaning
efficiency of Ti plasma on the process parameters
Lamella distance is the main parameter determining
cleaning efficiency and for maximum efficiency the
experiment should be executed at: ARC = 50 Hz;
pAr = 1 Pa; L = 10 mm, Isepar. = 0 A (floating potential).
Similar calculations were carried out for results
obtained for carbon cathodes (Fig. 4 and Fig. 5).
Fig. 4. Diagrams of the dependence of the ion current for
carbon cathode on process parameters
Fig. 5. Diagrams of the dependence of the cleaning
efficiency of C plasma on the process parameters
The experimental parameters for maximization of the ion
current are: ARC = 100 Hz, pAr = 0,01 Pa, L = 10 mm,
151
Isepar. = 0 A (floating potential), and the maximum
cleaning efficiency of carbon plasma should be achieved
at: ARC = 0 Hz, pAr = 0,1 Pa, L = 10 mm, Isepar. = 10 A.
The parameters determined using the Taguchi method,
which maximize the ion current and the cleaning
efficiency were verified experimentally. Besides, the
experiments were made with the optimum parameters,
which were selected taking into account the overall
influence of each parameter on the ion current and the
cleaning efficiency (Table 3 and 4).
Table 3. Maximizing and optimal parameters for Ti
Process ARC
[Hz]
pAr
[Pa]
L
[mm]
Isepar.
[A]
Iion.
[A]
Droplets
[%]
Max.
Iion
50 0.4 15 0 0,58 0,3
Max.
cleaning 50 1 10 0 0,46 0,3
Optimal 50 1 15 0 0,55 0,2
Table 4. Maximizing and optimal parameters for C
Process ARC
[Hz]
pAr
[Pa]
L
[mm]
Isepar.
[A]
Iion.
[A]
Droplets
[%]
Max.
Iion
100 0.01 10 0 0,4 1,2
Max.
cleaning
0 0,1 10 10 0,15 0,3
Optimal 50 0,01 10 0 0,28 0,3
Fig. 6 shows surfaces of the Ti and C films deposited
without and with the electrostatic filter. Part of the
microparticles are reflected from the lamellae and passes
through the filter, within a certain distance and tilt angle
of the filter blinds, but the obtained filtration efficiency is
good enough for mechanical applications.
Fig. 6. Micrographs of the surfaces of Ti and C films
deposited without (inserts) and with the electrostatic filter
(magn. 500×)
4. CONCLUSIONS
The applied method of design of experiments –
Taguchi method proved very effective for processing the
experimental results and optimizing the parameters of the
electrostatic filter. In the future, these findings will be
very important and helpful in designing the final
construction of the filter.
ACKNOWLEDGEMENTS
This work was supported by the Operational
Programme Innovative Economy POIG 2007-2013 within
Developmental Project No. UDA-POIG.01.03.01-32-
052/08-00: „Hybrid technologies for woodworking tools
modification”.
REFERENCES
1. O. Zimmer. Vacuum arc deposition by using a
Venetian blind particle filter// Surface and Coatings
Technology. 2005, v. 200, p. 440-443.
2. M. Vijaya Babu, et al. Simultaneous optimization of
flame spraying process parameters for high quality
molybdenum coatings using Taguchi methods //
Surface and Coatings Technology. 1996, v. 79,
p. 276-288.
Article received 13.09.10
. , .
,
.
, , .
, ,
.
. , .
,
.
,
, .
, ,
.
Ti C
|