On the kinetics of binary nucleation

Two problems of the theory of binary nucleation are solved: normalization of the equilibrium distribution function of nuclei and correct transition to the one-dimensional theory. Classification of multivariable nucleation processes is carried out and it is shown how to convert binary nucleation in...

Full description

Saved in:
Bibliographic Details
Date:2009
Main Author: Alekseechkin, N.V.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2009
Series:Вопросы атомной науки и техники
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/96350
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:On the kinetics of binary nucleation / N.V. Alekseechkin // Вопросы атомной науки и техники. — 2009. — № 4. — С.170 -174. — Бібліогр.: 10 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-96350
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-963502025-02-10T01:34:25Z On the kinetics of binary nucleation О кинетике бинарной нуклеации Про кінетику бінарної нуклеації Alekseechkin, N.V. Физика радиационных повреждений и явлений в твердых телах Two problems of the theory of binary nucleation are solved: normalization of the equilibrium distribution function of nuclei and correct transition to the one-dimensional theory. Classification of multivariable nucleation processes is carried out and it is shown how to convert binary nucleation into a process with linked fluxes by means of the corresponding transformation of the variables describing a nucleus. Just the use of the variables (total number of monomers, composition) makes it possible to solve the given problems. Two transitions to the one-dimensional nucleation are described. One of them corresponds to the formation of nuclei with stoichiometric composition. The other transition is that to unary (single-component) nucleation. Вирішено дві задачі теорії бінарної нуклеації: нормировка рівноважної функції розподілу зародків і коректний перехід в одномірну теорію. Проведено класифікацію багатомірних процесів зародження і показано, як перетворити бінарну нуклеацію в процес зі зв’язаними потоками за допомогою відповідного перетворення перемінных опису зародка. Саме використання перемінних (повне число мономерів, склад) дозволяе вирішити дані задачі. Описано два переходи в одномірну нуклеацію. Один з них відповідає утворенню зародків стехіометричного складу. Другий є перехід в однокомпонентну нуклеацію. Решены две задачи теории бинарной нуклеации: нормировка равновесной функции распределения зародышей и корректный переход в одномерную теорию. Проведена классификация многомерных процессов зарождения и показано, как представить бинарную нуклеацию в виде процесса со связанными потоками посредством соответствующего преобразования переменных описания зародыша. Именно использование переменных (полное число мономеров, состав) позволяет решить данные задачи. Описаны два перехода в одномерную нуклеацию. Один из них соответствует образованию зародышей стехиометрического состава. Другой есть переход в однокомпонентную нуклеацию. 2009 Article On the kinetics of binary nucleation / N.V. Alekseechkin // Вопросы атомной науки и техники. — 2009. — № 4. — С.170 -174. — Бібліогр.: 10 назв. — англ. 1562-6016 PACS: 64.60.-I, 64.60.Qb, 05.20.Dd, 05.10Gg https://nasplib.isofts.kiev.ua/handle/123456789/96350 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Физика радиационных повреждений и явлений в твердых телах
Физика радиационных повреждений и явлений в твердых телах
spellingShingle Физика радиационных повреждений и явлений в твердых телах
Физика радиационных повреждений и явлений в твердых телах
Alekseechkin, N.V.
On the kinetics of binary nucleation
Вопросы атомной науки и техники
description Two problems of the theory of binary nucleation are solved: normalization of the equilibrium distribution function of nuclei and correct transition to the one-dimensional theory. Classification of multivariable nucleation processes is carried out and it is shown how to convert binary nucleation into a process with linked fluxes by means of the corresponding transformation of the variables describing a nucleus. Just the use of the variables (total number of monomers, composition) makes it possible to solve the given problems. Two transitions to the one-dimensional nucleation are described. One of them corresponds to the formation of nuclei with stoichiometric composition. The other transition is that to unary (single-component) nucleation.
format Article
author Alekseechkin, N.V.
author_facet Alekseechkin, N.V.
author_sort Alekseechkin, N.V.
title On the kinetics of binary nucleation
title_short On the kinetics of binary nucleation
title_full On the kinetics of binary nucleation
title_fullStr On the kinetics of binary nucleation
title_full_unstemmed On the kinetics of binary nucleation
title_sort on the kinetics of binary nucleation
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2009
topic_facet Физика радиационных повреждений и явлений в твердых телах
url https://nasplib.isofts.kiev.ua/handle/123456789/96350
citation_txt On the kinetics of binary nucleation / N.V. Alekseechkin // Вопросы атомной науки и техники. — 2009. — № 4. — С.170 -174. — Бібліогр.: 10 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT alekseechkinnv onthekineticsofbinarynucleation
AT alekseechkinnv okinetikebinarnoinukleacii
AT alekseechkinnv prokínetikubínarnoínukleacíí
first_indexed 2025-12-02T12:47:30Z
last_indexed 2025-12-02T12:47:30Z
_version_ 1850400728753897472
fulltext ON THE KINETICS OF BINARY NUCLEATION N.V. Alekseechkin Akhiezer Institute for Theoretical Physics, National Science Center "Kharkov Institute of Physics and Technology", Kharkov, Ukraine E-mail: n.alex@kipt.kharkov.ua Two problems of the theory of binary nucleation are solved: normalization of the equilibrium distribution function of nuclei and correct transition to the one-dimensional theory. Classification of multivariable nucleation processes is carried out and it is shown how to convert binary nucleation into a process with linked fluxes by means of the corresponding transformation of the variables describing a nucleus. Just the use of the variables (total number of monomers, composition) makes it possible to solve the given problems. Two transitions to the one-dimensional nucleation are described. One of them corresponds to the formation of nuclei with stoichiometric composition. The other transition is that to unary (single-component) nucleation. PACS: 64.60.-I, 64.60.Qb, 05.20.Dd, 05.10Gg INTRODUCTION The phenomena of binary and multicomponent nucleation are studied rather intensively both theoretically and experimentally. The examples of such processes include the formation of gas bubbles in a two- component solution of vacancies and gas atoms in solids under irradiation [1,2], the nucleation of two- and multicomponent precipitates in alloys and solid solutions, the formation of aerosols in atmosphere (nucleation in a gas mixture). The theory of these phenomena relates to more general multivariable theory of nucleation [3] which is an extension of Zel'dovich- Frenkel’ one-dimensional theory [4,5] to the multivariable case. The phenomenological approach used in this theory is based on the expression for the work ),...,,( 21 pξξξΔΦ of the new-phase nucleus formation and the Fokker-Planck kinetic equation for the distribution function (DF) );,...,,( 21 tf pξξξ in the space of the variables }{ iξ that describe a nucleus. Among the unsolved problems of binary nucleation, the following two can be singled out: normalization of the equilibrium DF and correct passage to the one- dimensional limit. Notice that the steady state nucleation rate and the DF can not be calculated correctly without exact value of the normalization constant. In the present report, both these problems are solved with the use of the results of general multivariable nucleation theory developed in Ref. [3]. MODEL AND MAIN RESULTS OF THE MULTIVARIABLE THEORY OF NUCLEATION Near the saddle point , where a nucleus is assumed to be a macroscopic subsystem, the work ∗ξ ΔΦ can be represented as a quadratic form, ),...,,( 2 1)( 21 pH ξξξ+ΔΦ=ΔΦ ∗ξ , kiikp hH ξξξξξ =),...,,( 21 , (1) where kiikh ξξ ∂∂ΔΦ∂= 2 at ∗= ξξ , , )( ∗∗ ΔΦ=ΔΦ ξ and all variables are measured from their critical values; so, we have 0=∗ξ . Upon being reduced to the sum of squares, this form has one negative term. This is a characteristic feature of the processes of multivariable nucleation; the corresponding variable is called “unstable”. The nuclei which have passed over the energetic barrier in the vicinity of the saddle point as a result of Brownian motion in the space }{ iξ are the viable fragments of a new phase, so that the main problem of the theory is to calculate their flux over this barrier (the nucleation rate). The work )(ξΔΦ determines the equilibrium DF of nuclei as heterophase fluctuations [5] ⎥⎦ ⎤ ⎢⎣ ⎡ ΔΦ −= kT constf )(exp)(0 ξξ . (2) As mentioned above, the evolution of the DF is described by the Fokker-Planck equation ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − ∂ ∂ ∂ ∂ = ∂ ∂ ),(),(),( tftfd t tf i j ij i ξξξ ξ ξξ & . (3) The condition of equality of the flux to zero in the equilibrium state makes it possible to obtain an equation for . Substituting into eq. (3), we get iξ& )(0 ξf k ik kjk ij j ij i kT z h kT d kT d ξξ ξ ξ −≡−= ∂ ΔΦ∂ −=& , , (4) Hence DHZ = 1−= ZHD . (5) This significant relationship shows that macroscopic equations of movement of a nucleus in its phase space }{ iξ ( i.e. the matrix ) allow us to determine the matrix of diffusivities in the Fokker-Planck equation. Z In Ref. [3], the following equation for the steady state nucleation rate has been obtained: ( ) kThkTNI ∗ΔΦ −−−= e2 1 1 11 21 λπ , (6) where is an element of the matrix ; is the number of monomers in unit volume of the initial phase; 1 11 −h 1−H N 1λ is the negative eigenvalue of the matrix Z . 170 ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2009. №4-2. Серия: Физика радиационных повреждений и радиационное материаловедение (94), с. 170-174. An equation for the steady state DF is as follows [3]: ≡= ∫ ∞+ − )( 2 )( 0 2 2 )( )()( e eHξ e e e ξξ κ κ π κ dy kT ff y kT s , )(2 )( 2 1 0 ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ −≡ e eHξξ κkT erfcf (7) where )(1)( ξξ erferfc −≡ ; is the eigenvector of the matrix corresponding to e Z 1λ (this is the flux direction); )(eκ is the curvature of the normal section of the saddle surface along the direction . ΔΦ e Equations for the flux direction in processes of two- variable nucleation have been derived in Ref. [3] for different relationships between the nucleation parameters. In the case of binary nucleation, the following equation holds: γ γγ θ +⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − − − = 2 12 1122 12 12 1122 2 )( 2 h hhsignh h hhtg , (8) where 1122 / dd=γ . CLASSIFICATION OF MULTIVARIABLE NUCLEATION PROCESSES All multivariable processes of nucleation can be divided into two classes: (i) processes with independent changes of variables and (ii) processes with linked fluxes [6,7]. In the first case, a variation in the variable 1ξ in an elementary event does not affect the value of the variable 2ξ and vise versa; both the variables are physically equivalent. The processes of binary nucleation are of this type: a nucleus is characterized by the numbers of monomers of each kind, 11 n≡ξ and 22 n≡ξ ; the elementary event is the attachment or detachment of a monomer. More general case is the multicomponent nucleation; correspondingly, a nucleus is characterized by the numbers 11 n≡ξ , 22 n≡ξ , ..., pp n≡ξ of the monomers of each species. In the second case, a change in the variable 1ξ in an elementary event leads to a change in the variable 2ξ . The variation in 2ξ can be represented as the sum of a regular part and a fluctuating part . In addition, the fluctuations of )( 2 rδξ )( 2 fδξ 2ξ independent of 1ξ are possible. An example is non-isothermal nucleation in a mixture of a vapor and an inert gas [6]. The variables are the number of vapor molecules in a cluster ( n≡1ξ ) and the cluster energy ( εξ ≡2 ). When a molecule is attached to a nucleus, the average energy of the latter likewise increases. Of course, the combined processes are also possible, e.g. when non-isothermal effects are taken into account for the condensation of a vapor mixture; in this case, the variables are , , and 1n 2n ε . As is evident, the roles of variables are different in the processes with linked fluxes. Consequently, there is no need to bring the quadratic form H to the canonical form in order to single out the unstable variable: the number n≡1ξ of monomers in a nucleus or its size (radius, volume) is a natural unstable variable, as in the one-dimensional theory. Definitive signs of correspond to this fact. So, e.g. in the two-dimensional case, the following signs have to be: ikh 011 <h and . So, the normalization of the equilibrium DF for these processes with respect to stable variables [3] is carried out with the use of the fluctuation theory [8]. The normalization in respect to the unstable variable is carried out in the same way, as in the one-dimensional theory [5]. 022 >h n In the processes of binary, as well as -component, nucleation, the situation is quite different. The variables and are physically equivalent. Accordingly, and have to be of the same sign. It is not difficult to establish from the analysis of directions of the flux of nuclei on the ( , )-plane that the only possible physical situation is and at p 1n 2n 11h 22h 1n 2n 011 >h 022 >h 012 <h . These signs also can be obtained in direct calculations of for concrete mixtures using the experimental dates for the corresponding thermodynamic quantities. So, we can not apply the algorithm described above for the normalization of the function . The extension of the one-dimensional algorithm of normalization [5] to this case can not be performed also, so the normalization constant equal to the total number of monomers of both kinds, which is widely used for binary-nucleation processes in literature, is incorrect. Consequently, in order to normalize the function we have to convert the given process to a process with linked fluxes, i.e. to change the roles of variables by their corresponding transformation. Apparently, the total number of monomers in a nucleus, ikh ),( 210 nnf 21 NNN += ),( 210 nnf qnnnn +++= ...21 , and compositions, nnc /22 = , ..., , must be taken as new variables. In the variables ( n , , ..., ), the - component nucleation will be a process with linked fluxes with the corresponding signs of (the variable is unstable, as before; the variables are stable). nnc pp /= 2c pc p ikh n ic NORMALIZATION OF THE EQUILIBRIUM DISTRIBUTION FUNCTION As an example of a binary nucleation process, we consider the condensation of the mixture of vapors of two substances into ideal solution. The work of nucleus formation has the following form [9]: ,)(ln ln),( 3/2 2211 21 2 2 21 1 1221121 nvnv nn n kTn nn n kTnnnnn ++ + + + + ++=ΔΦ α χχ )/ln()( 00 iiiii PPkTPPv +−=χ , (9) 171 where is the molecular volume of the th species in a nucleus, iv i α is the surface tension, is the sum of partial pressures of vapors, and is the vapor pressure of pure i th component at the temperature . 21 PPP += 0 iP T We pass to the new variables and . Eq. (9) takes the form 21 nnn += )/( 212 nnnc += 3/2)()(),( ncscncn αμ +Δ−=ΔΦ (10) similar to the one-dimensional one. Correspondingly, and now. 0),( 11 <cnh 0),( 22 >cnh In the vicinity of the saddle point ( , ), the quadratic form in eq. (1) can be identically transformed to the following form: ∗n ∗c 2)(),( 22 2 ),( 22 ),( ))((det),( ncchn h cnH ecn cn cn −+= H , (11) where is determined from the condition of equilibrium with respect to composition c . ntgnhhnc e c ncnce )(),( 22 ),( 12 )( )/()( θ≡−= 0/),( =∂ΔΦ∂ ccn So, the equilibrium DF splits into two parts, ),(0 cnf )()(),( 00 cncnf flψρ= : kT nh cncn NNn 2),( 22 ),( )2/(det 210 e)()( H+ΔΦ − ∗ +=ρ , kT ncchcn fl ecn kT h c 2 ))((),( 22 2)(),( 22 e 2 )( − − = π ψ . (12) The “fluctuating” part )(cflψ of the equilibrium DF is normalized according to the theory of fluctuations [8], whereas the function )(0 nρ is normalized at as in the one-dimensional theory [5], acquiring the factor )(ncc e= 21 NNN += . As it is known, ),( 22 2)( /))(( cne hkTncc =− . This equality will be used below for describing the limiting cases. If the variables ( , ) are used nevertheless, then the DF is got by the reverse transition : 1n 2n ),( 210 nnf ),(),( 21 nncn → kT nncn kT h nn NNnnf ),(),( 22 21 21 210 21 e 2 ),( ΔΦ − + + = π , (13) where the multiplier is the Jacobian of this transition. This equation solves the problem of normalization of the function . )/(1 21 nn + ),( 210 nnf The matrix has the simplest form in the variables ( , ): there are only diagonal elements and . The matrix in the variables ( , c ) can be obtained by means of the transformation of initial movement equations (4) to these variables. Doing so, we find: D 1n 2n 11d 22d ),( cnD n ⎟⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜⎜ ⎜ ⎜ ⎜ ⎝ ⎛ −+−+− −+− + = ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ 2 22 2 11 2 2211 2211 2211 ),( )1()1( )1( n dcdc n dcdc n dcdcdd cnD (14) so that . Also, the following relationships can be derived: , , . Hence, we also can calculate the steady state nucleation rate in the variables ( , ) using the normalizing constant from (13); the nucleation rate value (6) is invariant with respect to the transformations 2),(),( /detdet 21 ∗= nnncn DD ),(2),( 21detdet nncn n HH ∗= ),(),( 21detdet nncn ZZ = ),( 1 ),( 1 21 nncn λλ = 1n 2n ),(),( 21 cnnn ↔ , as it must from the physical point of view. LIMITING CASES The equations 0/),( 21 =∂ΔΦ∂ innn , 1, 2, define the lines and of the equilibrium of a nucleus with respect to the variables and . They have the following directions in the vicinity of the saddle point: =i )1( eL )2( eL 1n 2n 12 11)1( h htg e −=θ , 22 12)2( h htg e −=θ . (15) There are kinetic and thermodynamic limits. Let us consider the former, 0/ 1122 →= ddγ and ∞→γ . The fact of the same signs of and reflects the certain symmetry of a system in respect to both the species. It leads to the symmetry of expression (9) with respect to and as well as to the following symmetry. In the limit 11h 22h 1n 2n ∞→γ , we have 22111 /det hd H→λ , and (see eq. (8)). The kinetics of the second species predominates in this case, so that the equilibrium in respect to the variable has a chance to be established. Therefore, the flux vector tends to the line . In the opposite case )2( 2212 / etghhtg θθ ≡−→ 2n )2( eL 0→γ , we have 11221 /det hd H→λ , and , i.e. the replacement of indexes )1( 1211 / etghhtg θθ ≡−→ 21↔ in the expression for 1λ takes place. So, the flux vector is enclosed between the equilibrium lines and , as it must from the physical point of view. )1( eL )2( eL Now let us pass to the variables ( n , ) and consider the thermodynamic limits. In binary nucleation, two transitions to the one-dimensional theory are possible. The first of them, (the variance of c tends to zero), is general for the processes with linked fluxes [3]. In this limit, the variable has the same, equilibrium, value for all the nuclei of size . It is seen from (12), that can be represented in this case as ; also, , and , i.e. c ∞→kTh cn /),( 22 c )()( nc e n 0f ))(()(),( )(c e 00 ncncnf −= δρ 0)()( →nc e ),( 11 ),( 22 ),( )/(det cncncn hh →H )(0 nρ converts to the DF of the one-dimensional theory. So, the variable has the same, critical, value for all the nuclei in this limit, i.e. it converts to the constant and falls out from consideration. This transition corresponds to the formation of the two- c ∗c 172 component embryos with the fixed (stoichiometric) composition . ∗= cc The second transition is peculiar to this process. This is the passage to unary nucleation, when one of the components vanishes. Let us assume . Since , and , we have: 02 →N 22 ~ NP 222 ~ Pd 0→γ , and consequently 0→θtg in this limit. Using (10), it is not difficult to obtain the following equation for : ∗c 1 2 1 P P c c ωω ϑ= − ∗ ∗ , 21 vv≡ω , ( ) kT PPv PP )( 0 2 0 1 0 1 0 21 e − − ≡ ω ϑ . (16) Taking an interest only in qualitative picture let us put 1=ω . Then one follows from (16) : ( ) ( )ϑ ϑ ′+ ′ =∗ 12 12 1 PP PPc . (17) So, at , or, what is the same, at , we have , i.e. the saddle point “drives down” to the -axis. 02 →N 02 →P 0→∗c n Further, in the same approximation, vvv ≡= 21 , one obtains from eq. (10): 3/43/2),( 11 9 2 − ∗−= nvh cn α , )1( ),( 22 ∗∗ ∗ − = cc kTnh cn , ∗ ∗ − +Δ= c ckTh cn 1 ln),( 12 χ , (18) where 12 χχχ −≡Δ . From these expressions one follows: at , and , i.e. ; has the same form as in the one-dimensional theory. Thus, this transition formally proceeds in accordance with the general way, , however, at , i.e. this is the transition to unary nucleation in the framework of the saddle-point theory. ∞→),( 22 cnh 0→∗c 0/)( ),( 22 2),( 12 →cncn hh ),( 11 ),( 22 ),( /det cncncn hh →H ),( 11 cnh ∞→kTh cn /),( 22 0→c In closing, let us find the contours of constant ratio [10] using from eq. (7). Applying the expansion rff s =0/ ),( 21 nnfs xxerf )/2()( π≈ , we find that in the vicinity of the saddle point the following equality holds: ( ) rnana f f s =⎥ ⎦ ⎤ ⎢ ⎣ ⎡ +−= 2211 0 21 2 1 π , ( ) ( )θ θκ tghh tgkT a 121121 )(12 1 + + −= , ( ) ( θ θκ tghh tgkT a 221222 )(12 1 + + −= ) . (19) From this equation one obtains: ( r a n a an 21 2 2 1 2 1 2 −+−= π ) . (20) So, we have the set of parallel straight lines (for different r ) with slope tangent θ θ τ tghh tghh a atg 2212 1211 2 1 + + −=−= . (21) As it was stated above, in the limit 0/ 1122 →= ddγ , 1211 / hhtg −→θ . It follows from (21) that 0→τtg in this case. In other words, in the case of slow kinetics of the second species the contours of rff s =0/ are almost parallel to the -axis. So, the theory confirms the results obtained by the authors of Ref. [10] via numerical solution of binary-nucleation equations. 1n CONCLUSIONS At first glance it would seem that processes of binary (multicomponent) nucleation and those with linked fluxes are physically different. However, the passage to the variables (total number of monomers, composition) converts binary nucleation into a process with linked fluxes. So, we conclude that the latter is the general case of nucleation processes. Representation of binary nucleation as a process with linked fluxes makes it possible to normalize the equilibrium DF and thereby to calculate correctly the stationary nucleation rate and size distribution of nuclei. Also, it allows us to investigate the transitions to the one-dimensional nucleation. The normalization factor for the equilibrium DF has been obtained in the framework of this approach. The nucleation rate value does not depend on the variables used, as it must from the physical point of view. The use of the variables (total number of monomers, composition) makes it possible to reveal and correctly describe all the limits, both the kinetic and thermodynamic ones. Two one-dimensional limits for binary nucleation have been described here. One of them corresponds to the formation of nuclei with stoichiometric composition. The second limit is the transition to unary (single-component) nucleation. The results of the theory which concern the steady state DF confirm the results of numerical solution of the binary-nucleation equations given in literature. REFERENCES 1. N.V. Alekseechkin and P.N. Ostapchuk. Homogeneous nucleation of gaseous pores in a two- component solution of vacancies and gas atoms // Fizika Tverdogo Tela. 1993, v. 35, p. 929-940 (Physics of the Solid State. 1993, V. 35, p. 479-484). 2. A.E.Volkov, A.I. Ryazanov. Theory of gas bubble nucleation in supersaturated solution of vacancies, interstitials and gas atoms // J. Nucl. Mater. 1999, v. 273, p. 155-163. 3. N.V. Alekseechkin. Multidimensional kinetic theory of first-order phase transitions // Fizika Tverdogo Tela. 2006, v. 48, p. 1676-1685 (Physics of the Solid State. 2006, v. 48, p. 1775-1785.). 4. Ya.B. Zel’dovich. To the theory of new-phase formation. Cavitation // JETP. 1942, № 12, p. 525-538. 5. Ya.I. Frenkel’. Kinetic Theory of Liquids. Lеningrad: «Nauka», 1975, 592 p. 6. J. Feder, K.C. Russell, J. Lothe, and G.M. Pound. Homogeneous nucleation and growth of 173 droplets in vapours // Adv. Phys. 1966, v. 15, p. 111- 178. 9. H. Reiss. The kinetics of phase transitions in binary systems // J. Chem. Phys. 1950, v. 18, p. 840- 848. 7. K.C.Russell. Linked flux analysis of nucleation in condensed phases // Acta Met. 1968, v. 16, p. 761- 769. 10. B.E. Wyslouzil and G. Wilemski. Binary nucleation kinetics. III. Transient behavior and time lags // J. Chem. Phys. 1996, v. 105, p. 1090-1100. 8. L.D. Landau and E.M. Lifshits. Statistical physics. Moscow: «Nauka», 1976, Part 1, 584 p. Статья поступила в редакцию 19.05.2009 г. О КИНЕТИКЕ БИНАРНОЙ НУКЛЕАЦИИ Н.В. Алексеечкин Решены две задачи теории бинарной нуклеации: нормировка равновесной функции распределения зародышей и корректный переход в одномерную теорию. Проведена классификация многомерных процессов зарождения и показано, как представить бинарную нуклеацию в виде процесса со связанными потоками посредством соответствующего преобразования переменных описания зародыша. Именно использование переменных (полное число мономеров, состав) позволяет решить данные задачи. Описаны два перехода в одномерную нуклеацию. Один из них соответствует образованию зародышей стехиометрического состава. Другой есть переход в однокомпонентную нуклеацию. ПРО КІНЕТИКУ БІНАРНОЇ НУКЛЕАЦІЇ М.В. Алєксєєчкін Вирішено дві задачі теорії бінарної нуклеації: нормировка рівноважної функції розподілу зародків і коректний перехід в одномірну теорію. Проведено класифікацію багатомірних процесів зародження і показано, як перетворити бінарну нуклеацію в процес зі зв’язаними потоками за допомогою відповідного перетворення перемінных опису зародка. Саме використання перемінних (повне число мономерів, склад) дозволяе вирішити дані задачі. Описано два переходи в одномірну нуклеацію. Один з них відповідає утворенню зародків стехіометричного складу. Другий є перехід в однокомпонентну нуклеацію. 174 MODEL AND MAIN RESULTS OF THE MULTIVARIABLE THEORY OF NUCLEATION