Computation studying of the neutron yield from the neutron-production target irradiated with electrons

It is considered the modeling of neutron yield from the targets with high atomic numbers irradiated with accelerated electrons. Modeling results from the MCNPX and GEANT software are compared with existing experimental results and deterministic calculations Розглянуто використання програмних кодiв...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Вопросы атомной науки и техники
Datum:2009
Hauptverfasser: Prokhorets, I.M., Prokhorets, S.I., Rudychev, Y.V., Skrypnik, A.I., Fedorchenko, D.V., Khazhmuradov, M.A.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2009
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/96515
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Computation studying of the neutron yield from the neutron-production target irradiated with electrons / I.M. Prokhorets, S.I. Prokhorets, Y.V. Rudychev, A.I. Skrypnik, D.V. Fedorchenko, M.A. Khazhmuradov // Вопросы атомной науки и техники. — 2009. — № 5. — С. 101-104. — Бібліогр.: 8 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-96515
record_format dspace
spelling Prokhorets, I.M.
Prokhorets, S.I.
Rudychev, Y.V.
Skrypnik, A.I.
Fedorchenko, D.V.
Khazhmuradov, M.A.
2016-03-17T20:51:09Z
2016-03-17T20:51:09Z
2009
Computation studying of the neutron yield from the neutron-production target irradiated with electrons / I.M. Prokhorets, S.I. Prokhorets, Y.V. Rudychev, A.I. Skrypnik, D.V. Fedorchenko, M.A. Khazhmuradov // Вопросы атомной науки и техники. — 2009. — № 5. — С. 101-104. — Бібліогр.: 8 назв. — англ.
1562-6016
PACS: 02.60.Cb, 28.41.Te, 28.52.Av
https://nasplib.isofts.kiev.ua/handle/123456789/96515
It is considered the modeling of neutron yield from the targets with high atomic numbers irradiated with accelerated electrons. Modeling results from the MCNPX and GEANT software are compared with existing experimental results and deterministic calculations
Розглянуто використання програмних кодiв MCNPX та GEANT для розрахунку виходу нейтронiв з нейтроноутворюючих мiшеней, що використовують прискоренi електрони з прискорювача. Доведено, що розрахунки з використанням методу Монте-Карло та програмного коду MCNPX добре узгоджу- ються з експериментом i аналiтичними розрахунками.
Рассмотрено применение программных кодов MCNPX и GEANT для расчета выхода нейтронов из различных нейтронопроизводящих мишеней, использующих ускоренные электроны из ускорителя. Показано, что расчеты по методу Монте-Карло, выполненные при помощи программного кода MCNPX, хорошо согласуются с имеющимися данными и данными аналитических расчетов.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Ядернo-физические методы и обработка данных
Computation studying of the neutron yield from the neutron-production target irradiated with electrons
Розрахунковi дослiдження виходiв нейтронiв з нейтроноутворюючої мiшенi, що опромiнюється електронами
Расчетные исследования выходов нейтронов с нейтронопроизводящей мишени, облучаемой электронами
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Computation studying of the neutron yield from the neutron-production target irradiated with electrons
spellingShingle Computation studying of the neutron yield from the neutron-production target irradiated with electrons
Prokhorets, I.M.
Prokhorets, S.I.
Rudychev, Y.V.
Skrypnik, A.I.
Fedorchenko, D.V.
Khazhmuradov, M.A.
Ядернo-физические методы и обработка данных
title_short Computation studying of the neutron yield from the neutron-production target irradiated with electrons
title_full Computation studying of the neutron yield from the neutron-production target irradiated with electrons
title_fullStr Computation studying of the neutron yield from the neutron-production target irradiated with electrons
title_full_unstemmed Computation studying of the neutron yield from the neutron-production target irradiated with electrons
title_sort computation studying of the neutron yield from the neutron-production target irradiated with electrons
author Prokhorets, I.M.
Prokhorets, S.I.
Rudychev, Y.V.
Skrypnik, A.I.
Fedorchenko, D.V.
Khazhmuradov, M.A.
author_facet Prokhorets, I.M.
Prokhorets, S.I.
Rudychev, Y.V.
Skrypnik, A.I.
Fedorchenko, D.V.
Khazhmuradov, M.A.
topic Ядернo-физические методы и обработка данных
topic_facet Ядернo-физические методы и обработка данных
publishDate 2009
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Розрахунковi дослiдження виходiв нейтронiв з нейтроноутворюючої мiшенi, що опромiнюється електронами
Расчетные исследования выходов нейтронов с нейтронопроизводящей мишени, облучаемой электронами
description It is considered the modeling of neutron yield from the targets with high atomic numbers irradiated with accelerated electrons. Modeling results from the MCNPX and GEANT software are compared with existing experimental results and deterministic calculations Розглянуто використання програмних кодiв MCNPX та GEANT для розрахунку виходу нейтронiв з нейтроноутворюючих мiшеней, що використовують прискоренi електрони з прискорювача. Доведено, що розрахунки з використанням методу Монте-Карло та програмного коду MCNPX добре узгоджу- ються з експериментом i аналiтичними розрахунками. Рассмотрено применение программных кодов MCNPX и GEANT для расчета выхода нейтронов из различных нейтронопроизводящих мишеней, использующих ускоренные электроны из ускорителя. Показано, что расчеты по методу Монте-Карло, выполненные при помощи программного кода MCNPX, хорошо согласуются с имеющимися данными и данными аналитических расчетов.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/96515
citation_txt Computation studying of the neutron yield from the neutron-production target irradiated with electrons / I.M. Prokhorets, S.I. Prokhorets, Y.V. Rudychev, A.I. Skrypnik, D.V. Fedorchenko, M.A. Khazhmuradov // Вопросы атомной науки и техники. — 2009. — № 5. — С. 101-104. — Бібліогр.: 8 назв. — англ.
work_keys_str_mv AT prokhoretsim computationstudyingoftheneutronyieldfromtheneutronproductiontargetirradiatedwithelectrons
AT prokhoretssi computationstudyingoftheneutronyieldfromtheneutronproductiontargetirradiatedwithelectrons
AT rudychevyv computationstudyingoftheneutronyieldfromtheneutronproductiontargetirradiatedwithelectrons
AT skrypnikai computationstudyingoftheneutronyieldfromtheneutronproductiontargetirradiatedwithelectrons
AT fedorchenkodv computationstudyingoftheneutronyieldfromtheneutronproductiontargetirradiatedwithelectrons
AT khazhmuradovma computationstudyingoftheneutronyieldfromtheneutronproductiontargetirradiatedwithelectrons
AT prokhoretsim rozrahunkovidoslidžennâvihodivneitronivzneitronoutvorûûčoímišeniŝooprominûêtʹsâelektronami
AT prokhoretssi rozrahunkovidoslidžennâvihodivneitronivzneitronoutvorûûčoímišeniŝooprominûêtʹsâelektronami
AT rudychevyv rozrahunkovidoslidžennâvihodivneitronivzneitronoutvorûûčoímišeniŝooprominûêtʹsâelektronami
AT skrypnikai rozrahunkovidoslidžennâvihodivneitronivzneitronoutvorûûčoímišeniŝooprominûêtʹsâelektronami
AT fedorchenkodv rozrahunkovidoslidžennâvihodivneitronivzneitronoutvorûûčoímišeniŝooprominûêtʹsâelektronami
AT khazhmuradovma rozrahunkovidoslidžennâvihodivneitronivzneitronoutvorûûčoímišeniŝooprominûêtʹsâelektronami
AT prokhoretsim rasčetnyeissledovaniâvyhodovneitronovsneitronoproizvodâŝeimišenioblučaemoiélektronami
AT prokhoretssi rasčetnyeissledovaniâvyhodovneitronovsneitronoproizvodâŝeimišenioblučaemoiélektronami
AT rudychevyv rasčetnyeissledovaniâvyhodovneitronovsneitronoproizvodâŝeimišenioblučaemoiélektronami
AT skrypnikai rasčetnyeissledovaniâvyhodovneitronovsneitronoproizvodâŝeimišenioblučaemoiélektronami
AT fedorchenkodv rasčetnyeissledovaniâvyhodovneitronovsneitronoproizvodâŝeimišenioblučaemoiélektronami
AT khazhmuradovma rasčetnyeissledovaniâvyhodovneitronovsneitronoproizvodâŝeimišenioblučaemoiélektronami
first_indexed 2025-11-25T20:34:32Z
last_indexed 2025-11-25T20:34:32Z
_version_ 1850525860150378496
fulltext COMPUTATION STUDYING OF THE NEUTRON YIELD FROM THE NEUTRON-PRODUCTION TARGET IRRADIATED WITH ELECTRONS I.M. Prokhorets, S.I. Prokhorets, Y.V. Rudychev, A.I. Skrypnik, D.V. Fedorchenko, M.A. Khazhmuradov ∗ National Science Center ”Kharkov Institute of Physics and Technology”, 61108, Kharkov, Ukraine It is considered the modeling of neutron yield from the targets with high atomic numbers irradiated with accelerated electrons. Modeling results from the MCNPX and GEANT software are compared with existing experimental results and deterministic calculations. PACS: 02.60.Cb, 28.41.Te, 28.52.Av 1. INTRODUCTION Problems of increasing of quality, reliability and longevity of technical devices, equipment, compo- nents, materials and complex constructions are of special importance in modern conditions. Solv- ing of these problems significantly depends on ef- ficiency of control devices and methods. Meth- ods of non-destructive control are the most inter- esting and promising ones in the industrial condi- tions. One of such methods is material and device defectoscopy using gamma- and roentgen-radiation or bremsstrahlung from the electron accelerators. Neu- tron radiography is one of the non-destructive con- trol methods that are being strongly developed in the highly industrialized countries. There are no neutron-radiography facilities in the Ukraine now, though its development and production will allow keeping up to modern development of science and technics. Practical implementation of the neutron ra- diography method will give new non-destructive con- trol possibilities in aerospace, fuel and atomic indus- try. Neutron radiography and neutron tomography will give new instruments for testing of many prod- ucts with both light and heave elements and their isotopes in composition. Advantage and benefits of the non-destructive control method with neutron usage come from large cross-sections of the neutron interaction with some chemical elements compared with those one for gamma-quanta (Fig. 1) [1]. Qualitative advantage of neutron beam is shown in possibility of obtaining more contrasting and in- formative image, comparing with radiogram one, e.g. images of fuel elements in the reactor experimental or working device (Fig. 2). Fig.1. Mass cross-sections of the thermal neutrons (En = 0, 025 eV ) and γ-radiation with different energies versus matter atomic number (for natural isotope composition) Inconel plenum Natural UO2 Enriched UO2 20 mma) Image by NIP b) Image by X-ray radiograph Fig.2. Neutronogram and radiogram of the experimental device with fuel elements Neutron target is of the most important parts of the neutronography facility. Neutron target is device where neutrons are born as the result of radiation ∗Corresponding author. E-mail address: khazhm@kipt.kharkov.ua PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2009, N5 Series: Nuclear Physics Investigations (52), p.101-104. 101 source interaction with target media. In our case ra- diation source is electron from the linear accelerator. In this article results of modeling of neutron yield for wide energy range of electrons irradiating the tar- get are given and our modeling results are compared with analytical ones [2, 3]. This work is necessary because of absence of modern data for modeling and calculation of new physical and technical facilities, where nuclear radiation is used. 2. RESULTS OF THE COMPUTER EXPERIMENT Basis of the computer experiment is computer with proper characteristics and software, the user fa- miliar with. For our work we used processor AMD Athlon64 1.8 MHz and software MCNPX. Tasks considered in our work concern radiation passing through the matter and their solving is being studied very intensively for a long time. Originally they were solved using Boltzman transport equation but the largest success was achieved when probabilis- tic methods were applied. One of such methods is Monte Carlo method, used for solving of different mathematical tasks by sampling the random vari- ables [4]. In such a way it is simulated the whole track of the nuclear particle - from the ”birth” place to the ”death” (capture, scattering, escaping from the modelling object etc.) Different versions of MCNPX simulate neutron transfer in 3D-geometry using the random variable sampling [5]. The most important in this software is taking into account the continuous energy dependence of the modeled parameters. Such method is very realistic one and in some articles is called ”theoretical experiment”. As many other Monte Carlo programs, MCNPX uses the Lehmer method for random variables sam- pling. Pseodurandom number sequence In is gener- ated by In+1 = mod(MIn, 248), where M - is ran- dom number multiplier, and 48-bit integers and 48- bit floating point mantissas are assumed. The de- fault value of M , which can be changed by the user, is M = 519 = 19073486328125. Then pseodurandom number is then Rn = 2−48In, and starting pseodurandom number for each sampling is In+S = mod(MSIn, 248), where S - pseo- durandom number stride. Thus, for MCNPX al- gorithm period we obtain P = 246 ≈ 7, 04 · 1013, or after some modifications of algorithm we obtain P = 248 ≈ 2, 81 · 1014. Sufficiently great algorithm period provides for MCNPX stable work with random variables. MCNPX warns about number of histories, where stride S was exceeded, and also warn about algo- rithm period exceeding. In computer experiment, considered in this article we used electron beam from the linear accelerator. Neutrons were obtained via process of direct electron interaction with target ma- terial and as the result of double conversion process electron → bremsstrahlung gamma-quantum → neu- trons after (γ, n), (γ, 2n), . . . , (γ, xn) reactions. All neutron-producing targets have the similar form with cross-section 4.5 × 4.5 in2. For easy com- paring of the modeling results and experimental data the thickness and the shape of targets were the same. Modeling was done using MCNPX code, based on Monte Carlo method, with taking into account the neutron-producing target real parameters. Model- ing results obtained in this article are compared with results from [6], modeling results obtained using GEANT [7, 8] and theoretical investigations [2, 3]. Comparing results is given in table. According to this dependence of neutron yield from tantalum and lead targets on accelerated electron energy is shown at Fig. 3. Dependence of neutron yield from targets with large atomic numbers on the target thickness is shown at Fig. 4. Results was obtained by MCNPX model- ing. From the Fig. 5 it is obvious that effective en- ergy of the electrons in the neutron-producing target doesn’t exceed 100 MeV, so to estimate neutron yield it is sufficient to consider electron energy greater or equal 100 MeV (electron beam energy is 200 MeV at Fig. 4). Fig.3. Neutron yield from the tantalum (a) and lead (b) neutron-producing targets versus electron energy 102 Comparison of simulation and experiment Target Mate- rial Target thickness, cm Target square shape, in Beam energy, MeV Yield, n/e Yield, n/e MCNPX simulation Ratio, sim./exp. Yield, n/e GEANT4 simulation Ratio, sim./exp Experiment Cu 5.93 4.5×4.5 21 5.90E-04 6.60E-04 0.89 4.89E-04 0.83 Cu 5.93 4.5×4.5 28 2.14E-03 1.85E-03 0.87 1.58E-03 0.74 Cu 5.93 4.5×4.5 34.3 3.34E-03 3.20E-03 0.96 2.58E-03 0.77 Pb 0.519 4.5×4.5 19 7.00E-04 6.90E-04 0.99 8.10E-04 1.16 Pb 0.519 4.5×4.5 28 1.66E-03 1.35E-03 0.82 1.75E-03 1.05 Pb 0.519 4.5×4.5 34.3 2.10E-03 1.53E-03 0.73 2.19E-03 1.04 Pb 3 4.5×4.5 19 2.46E-03 2.20E-03 0.9 2.39E-03 0.97 Pb 3 4.5×4.5 28 6.70E-03 5.41E-03 0.81 6.14E-03 0.92 Ta 0.374 4.5×4.5 19 5.18E-04 6.02E-04 0.86 6.49E-04 1.25 Ta 0.374 4.5×4.5 28 1.38E-03 1.47E-03 0.94 1.48E-03 1.07 Ta 0.374 4.5×4.5 34.3 1.80E-03 1.82E-03 0.99 1.80E-03 1 Swanson Ta 8.5 4.5×4.5 10 1.70E-05 1.72E-05 0.99 2.60E-05 1.53 Ta 8.5 4.5×4.5 25 5.29E-03 4.61E-03 0.87 4.19E-03 0.79 Ta 8.5 4.5×4.5 34 9.16E-03 8.68E-03 0.95 7.50E-03 0.82 Ta 8.5 4.5×4.5 100 3.27E-02 3.12E-02 0.95 2.69E-02 0.82 Ta 8.5 4.5×4.5 150 4.97E-02 4.85E-02 0.98 4.26E-02 0.86 Pb 10 4.5×4.5 10 3.22E-05 3.00E-05 0.93 4.10E-05 1.27 Pb 10 4.5×4.5 25 5.73E-03 4.87E-03 0.85 5.25E-03 0.92 Pb 10 4.5×4.5 34 9.65E-03 8.53E-03 0.88 9.29E-03 0.96 Pb 10 4.5×4.5 100 3.36E-02 3.10E-02 0.92 3.41E-02 1.02 Pb 10 4.5×4.5 150 4.36E-02 4.73E-02 0.92 5.14E-02 0.62 Fig.4. Neutron yield from different targets versus target thickness (electron beam energy 200 MeV) Fig.5. Neutron yield per energy from tungsten target versus electron energy 3. CONCLUSIONS Results of the investigations, carried out in this article, show that Monte Carlo method can be used for modeling of the neutron born process in the ir- radiated with electrons targets from materials with large atomic numbers, if the database on the electro- nuclear interactions for these materials exist. The distinctive feature of our studying is usage of the targets from non-fission materials. Presence of the cross-section databases for these materials al- lows using MCNP code without additional physical models for simulation processes. If you have no cross-section databases, you’d used GEANT4 software, where it is possible to change the parameters of the physical models, as you need, and unlike MCNP, GEANT4 is free distributed software. References 1. N.D. Tufaykov, A.S. Shtan. Basis of the neutron radiography. M.: ”Atomizdat”, 1975, 256p. (in Russian). 2. W.P. Swanson. Calculation of neutron yields re- leased by electronincident on selected materials // Health Physics. 1978, v.35, p.353-367. 3. W.P. Swanson. Improved calculation of pho- toneutron yield released by incident electrons // Health Physics. 1979, v.37, p.347-358. 103 4. I.M. Sobol. The Monte-Carlo method. M.: ”Nauka”, 1968, 64p. (in Russian). 5. MCNP 2.4.0. RSICC computer code collection. Monte-Carlo N-Particle Transport Code System for multiparticle and high energy applications. CCC-715, 2002. 6. W.C. Barber and W.D. George. High-Energy Physics Laboratory, Stanford university, Stan- ford, California // Physical Review. 1959, v.116, No 6, p.1551-1559. 7. GEANT4 Physics Reference Manual. GEANT4 Working Group. CERN, June 21, 2004. 8. I.M. Prokhorets, S.I. Prokhorets, Y.V. Rudy- chev, M.A. Khazhmuradov, D.V. Fedorchenko. Questions of the effective Methods choosing for neutron-physical processes simulation // Prob- lems of Atomic Science and Technology. Series ”Nuclear Physics Investigations”. 2007, N5(48), p.131-136. РАСЧЕТНЫЕ ИССЛЕДОВАНИЯ ВЫХОДОВ НЕЙТРОНОВ С НЕЙТРОНОПРОИЗВОДЯЩЕЙ МИШЕНИ, ОБЛУЧАЕМОЙ ЭЛЕКТРОНАМИ И.М. Прохорец, С.И. Прохорец, Е.В. Рудычев, А.И. Скрыпник, Д.В. Федорченко, М.А. Хажмурадов Рассмотрено применение программных кодов MCNPX и GEANT для расчета выхода нейтронов из различных нейтронопроизводящих мишеней, использующих ускоренные электроны из ускорителя. По- казано, что расчеты по методу Монте-Карло, выполненные при помощи программного кода MCNPX, хорошо согласуются с имеющимися данными и данными аналитических расчетов. РОЗРАХУНКОВI ДОСЛIДЖЕННЯ ВИХОДIВ НЕЙТРОНIВ З НЕЙТРОНОУТВОРЮЮЧОЇ МIШЕНI, ЩО ОПРОМIНЮЄТЬСЯ ЕЛЕКТРОНАМИ I.М. Прохорець, С.I. Прохорець, Є.В. Рудичев, А.I. Скрипник, Д.В. Федорченко, М.А. Хажмурадов Розглянуто використання програмних кодiв MCNPX та GEANT для розрахунку виходу нейтронiв з нейтроноутворюючих мiшеней, що використовують прискоренi електрони з прискорювача. Доведено, що розрахунки з використанням методу Монте-Карло та програмного коду MCNPX добре узгоджу- ються з експериментом i аналiтичними розрахунками. 104