Computation studying of the neutron yield from the neutron-production target irradiated with electrons
It is considered the modeling of neutron yield from the targets with high atomic numbers irradiated with accelerated electrons. Modeling results from the MCNPX and GEANT software are compared with existing experimental results and deterministic calculations Розглянуто використання програмних кодiв...
Gespeichert in:
| Veröffentlicht in: | Вопросы атомной науки и техники |
|---|---|
| Datum: | 2009 |
| Hauptverfasser: | , , , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2009
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/96515 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Computation studying of the neutron yield from the neutron-production target irradiated with electrons / I.M. Prokhorets, S.I. Prokhorets, Y.V. Rudychev, A.I. Skrypnik, D.V. Fedorchenko, M.A. Khazhmuradov // Вопросы атомной науки и техники. — 2009. — № 5. — С. 101-104. — Бібліогр.: 8 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-96515 |
|---|---|
| record_format |
dspace |
| spelling |
Prokhorets, I.M. Prokhorets, S.I. Rudychev, Y.V. Skrypnik, A.I. Fedorchenko, D.V. Khazhmuradov, M.A. 2016-03-17T20:51:09Z 2016-03-17T20:51:09Z 2009 Computation studying of the neutron yield from the neutron-production target irradiated with electrons / I.M. Prokhorets, S.I. Prokhorets, Y.V. Rudychev, A.I. Skrypnik, D.V. Fedorchenko, M.A. Khazhmuradov // Вопросы атомной науки и техники. — 2009. — № 5. — С. 101-104. — Бібліогр.: 8 назв. — англ. 1562-6016 PACS: 02.60.Cb, 28.41.Te, 28.52.Av https://nasplib.isofts.kiev.ua/handle/123456789/96515 It is considered the modeling of neutron yield from the targets with high atomic numbers irradiated with accelerated electrons. Modeling results from the MCNPX and GEANT software are compared with existing experimental results and deterministic calculations Розглянуто використання програмних кодiв MCNPX та GEANT для розрахунку виходу нейтронiв з нейтроноутворюючих мiшеней, що використовують прискоренi електрони з прискорювача. Доведено, що розрахунки з використанням методу Монте-Карло та програмного коду MCNPX добре узгоджу- ються з експериментом i аналiтичними розрахунками. Рассмотрено применение программных кодов MCNPX и GEANT для расчета выхода нейтронов из различных нейтронопроизводящих мишеней, использующих ускоренные электроны из ускорителя. Показано, что расчеты по методу Монте-Карло, выполненные при помощи программного кода MCNPX, хорошо согласуются с имеющимися данными и данными аналитических расчетов. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Ядернo-физические методы и обработка данных Computation studying of the neutron yield from the neutron-production target irradiated with electrons Розрахунковi дослiдження виходiв нейтронiв з нейтроноутворюючої мiшенi, що опромiнюється електронами Расчетные исследования выходов нейтронов с нейтронопроизводящей мишени, облучаемой электронами Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Computation studying of the neutron yield from the neutron-production target irradiated with electrons |
| spellingShingle |
Computation studying of the neutron yield from the neutron-production target irradiated with electrons Prokhorets, I.M. Prokhorets, S.I. Rudychev, Y.V. Skrypnik, A.I. Fedorchenko, D.V. Khazhmuradov, M.A. Ядернo-физические методы и обработка данных |
| title_short |
Computation studying of the neutron yield from the neutron-production target irradiated with electrons |
| title_full |
Computation studying of the neutron yield from the neutron-production target irradiated with electrons |
| title_fullStr |
Computation studying of the neutron yield from the neutron-production target irradiated with electrons |
| title_full_unstemmed |
Computation studying of the neutron yield from the neutron-production target irradiated with electrons |
| title_sort |
computation studying of the neutron yield from the neutron-production target irradiated with electrons |
| author |
Prokhorets, I.M. Prokhorets, S.I. Rudychev, Y.V. Skrypnik, A.I. Fedorchenko, D.V. Khazhmuradov, M.A. |
| author_facet |
Prokhorets, I.M. Prokhorets, S.I. Rudychev, Y.V. Skrypnik, A.I. Fedorchenko, D.V. Khazhmuradov, M.A. |
| topic |
Ядернo-физические методы и обработка данных |
| topic_facet |
Ядернo-физические методы и обработка данных |
| publishDate |
2009 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Розрахунковi дослiдження виходiв нейтронiв з нейтроноутворюючої мiшенi, що опромiнюється електронами Расчетные исследования выходов нейтронов с нейтронопроизводящей мишени, облучаемой электронами |
| description |
It is considered the modeling of neutron yield from the targets with high atomic numbers irradiated with accelerated
electrons. Modeling results from the MCNPX and GEANT software are compared with existing experimental results
and deterministic calculations
Розглянуто використання програмних кодiв MCNPX та GEANT для розрахунку виходу нейтронiв
з нейтроноутворюючих мiшеней, що використовують прискоренi електрони з прискорювача. Доведено,
що розрахунки з використанням методу Монте-Карло та програмного коду MCNPX добре узгоджу-
ються з експериментом i аналiтичними розрахунками.
Рассмотрено применение программных кодов MCNPX и GEANT для расчета выхода нейтронов из
различных нейтронопроизводящих мишеней, использующих ускоренные электроны из ускорителя. Показано, что расчеты по методу Монте-Карло, выполненные при помощи программного кода MCNPX,
хорошо согласуются с имеющимися данными и данными аналитических расчетов.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/96515 |
| citation_txt |
Computation studying of the neutron yield from the neutron-production target irradiated with electrons / I.M. Prokhorets, S.I. Prokhorets, Y.V. Rudychev, A.I. Skrypnik, D.V. Fedorchenko, M.A. Khazhmuradov // Вопросы атомной науки и техники. — 2009. — № 5. — С. 101-104. — Бібліогр.: 8 назв. — англ. |
| work_keys_str_mv |
AT prokhoretsim computationstudyingoftheneutronyieldfromtheneutronproductiontargetirradiatedwithelectrons AT prokhoretssi computationstudyingoftheneutronyieldfromtheneutronproductiontargetirradiatedwithelectrons AT rudychevyv computationstudyingoftheneutronyieldfromtheneutronproductiontargetirradiatedwithelectrons AT skrypnikai computationstudyingoftheneutronyieldfromtheneutronproductiontargetirradiatedwithelectrons AT fedorchenkodv computationstudyingoftheneutronyieldfromtheneutronproductiontargetirradiatedwithelectrons AT khazhmuradovma computationstudyingoftheneutronyieldfromtheneutronproductiontargetirradiatedwithelectrons AT prokhoretsim rozrahunkovidoslidžennâvihodivneitronivzneitronoutvorûûčoímišeniŝooprominûêtʹsâelektronami AT prokhoretssi rozrahunkovidoslidžennâvihodivneitronivzneitronoutvorûûčoímišeniŝooprominûêtʹsâelektronami AT rudychevyv rozrahunkovidoslidžennâvihodivneitronivzneitronoutvorûûčoímišeniŝooprominûêtʹsâelektronami AT skrypnikai rozrahunkovidoslidžennâvihodivneitronivzneitronoutvorûûčoímišeniŝooprominûêtʹsâelektronami AT fedorchenkodv rozrahunkovidoslidžennâvihodivneitronivzneitronoutvorûûčoímišeniŝooprominûêtʹsâelektronami AT khazhmuradovma rozrahunkovidoslidžennâvihodivneitronivzneitronoutvorûûčoímišeniŝooprominûêtʹsâelektronami AT prokhoretsim rasčetnyeissledovaniâvyhodovneitronovsneitronoproizvodâŝeimišenioblučaemoiélektronami AT prokhoretssi rasčetnyeissledovaniâvyhodovneitronovsneitronoproizvodâŝeimišenioblučaemoiélektronami AT rudychevyv rasčetnyeissledovaniâvyhodovneitronovsneitronoproizvodâŝeimišenioblučaemoiélektronami AT skrypnikai rasčetnyeissledovaniâvyhodovneitronovsneitronoproizvodâŝeimišenioblučaemoiélektronami AT fedorchenkodv rasčetnyeissledovaniâvyhodovneitronovsneitronoproizvodâŝeimišenioblučaemoiélektronami AT khazhmuradovma rasčetnyeissledovaniâvyhodovneitronovsneitronoproizvodâŝeimišenioblučaemoiélektronami |
| first_indexed |
2025-11-25T20:34:32Z |
| last_indexed |
2025-11-25T20:34:32Z |
| _version_ |
1850525860150378496 |
| fulltext |
COMPUTATION STUDYING OF THE NEUTRON YIELD
FROM THE NEUTRON-PRODUCTION TARGET
IRRADIATED WITH ELECTRONS
I.M. Prokhorets, S.I. Prokhorets, Y.V. Rudychev, A.I. Skrypnik,
D.V. Fedorchenko, M.A. Khazhmuradov ∗
National Science Center ”Kharkov Institute of Physics and Technology”, 61108, Kharkov, Ukraine
It is considered the modeling of neutron yield from the targets with high atomic numbers irradiated with accelerated
electrons. Modeling results from the MCNPX and GEANT software are compared with existing experimental results
and deterministic calculations.
PACS: 02.60.Cb, 28.41.Te, 28.52.Av
1. INTRODUCTION
Problems of increasing of quality, reliability and
longevity of technical devices, equipment, compo-
nents, materials and complex constructions are of
special importance in modern conditions. Solv-
ing of these problems significantly depends on ef-
ficiency of control devices and methods. Meth-
ods of non-destructive control are the most inter-
esting and promising ones in the industrial condi-
tions. One of such methods is material and device
defectoscopy using gamma- and roentgen-radiation or
bremsstrahlung from the electron accelerators. Neu-
tron radiography is one of the non-destructive con-
trol methods that are being strongly developed in
the highly industrialized countries. There are no
neutron-radiography facilities in the Ukraine now,
though its development and production will allow
keeping up to modern development of science and
technics. Practical implementation of the neutron ra-
diography method will give new non-destructive con-
trol possibilities in aerospace, fuel and atomic indus-
try. Neutron radiography and neutron tomography
will give new instruments for testing of many prod-
ucts with both light and heave elements and their
isotopes in composition.
Advantage and benefits of the non-destructive
control method with neutron usage come from large
cross-sections of the neutron interaction with some
chemical elements compared with those one for
gamma-quanta (Fig. 1) [1].
Qualitative advantage of neutron beam is shown
in possibility of obtaining more contrasting and in-
formative image, comparing with radiogram one, e.g.
images of fuel elements in the reactor experimental
or working device (Fig. 2).
Fig.1. Mass cross-sections of the thermal neutrons
(En = 0, 025 eV ) and γ-radiation with different
energies versus matter atomic number (for natural
isotope composition)
Inconel plenum
Natural UO2
Enriched UO2
20 mma) Image by NIP
b) Image by X-ray radiograph
Fig.2. Neutronogram and radiogram of the
experimental device with fuel elements
Neutron target is of the most important parts of
the neutronography facility. Neutron target is device
where neutrons are born as the result of radiation
∗Corresponding author. E-mail address: khazhm@kipt.kharkov.ua
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2009, N5
Series: Nuclear Physics Investigations (52), p.101-104.
101
source interaction with target media. In our case ra-
diation source is electron from the linear accelerator.
In this article results of modeling of neutron yield
for wide energy range of electrons irradiating the tar-
get are given and our modeling results are compared
with analytical ones [2, 3]. This work is necessary
because of absence of modern data for modeling and
calculation of new physical and technical facilities,
where nuclear radiation is used.
2. RESULTS OF THE COMPUTER
EXPERIMENT
Basis of the computer experiment is computer
with proper characteristics and software, the user fa-
miliar with. For our work we used processor AMD
Athlon64 1.8 MHz and software MCNPX.
Tasks considered in our work concern radiation
passing through the matter and their solving is being
studied very intensively for a long time. Originally
they were solved using Boltzman transport equation
but the largest success was achieved when probabilis-
tic methods were applied. One of such methods is
Monte Carlo method, used for solving of different
mathematical tasks by sampling the random vari-
ables [4]. In such a way it is simulated the whole
track of the nuclear particle - from the ”birth” place
to the ”death” (capture, scattering, escaping from the
modelling object etc.) Different versions of MCNPX
simulate neutron transfer in 3D-geometry using the
random variable sampling [5]. The most important
in this software is taking into account the continuous
energy dependence of the modeled parameters. Such
method is very realistic one and in some articles is
called ”theoretical experiment”.
As many other Monte Carlo programs, MCNPX
uses the Lehmer method for random variables sam-
pling. Pseodurandom number sequence In is gener-
ated by In+1 = mod(MIn, 248), where M - is ran-
dom number multiplier, and 48-bit integers and 48-
bit floating point mantissas are assumed. The de-
fault value of M , which can be changed by the user,
is M = 519 = 19073486328125.
Then pseodurandom number is then Rn =
2−48In, and starting pseodurandom number for each
sampling is In+S = mod(MSIn, 248), where S - pseo-
durandom number stride. Thus, for MCNPX al-
gorithm period we obtain P = 246 ≈ 7, 04 · 1013,
or after some modifications of algorithm we obtain
P = 248 ≈ 2, 81 · 1014.
Sufficiently great algorithm period provides
for MCNPX stable work with random variables.
MCNPX warns about number of histories, where
stride S was exceeded, and also warn about algo-
rithm period exceeding. In computer experiment,
considered in this article we used electron beam from
the linear accelerator. Neutrons were obtained via
process of direct electron interaction with target ma-
terial and as the result of double conversion process
electron → bremsstrahlung gamma-quantum → neu-
trons after (γ, n), (γ, 2n), . . . , (γ, xn) reactions.
All neutron-producing targets have the similar
form with cross-section 4.5 × 4.5 in2. For easy com-
paring of the modeling results and experimental data
the thickness and the shape of targets were the same.
Modeling was done using MCNPX code, based on
Monte Carlo method, with taking into account the
neutron-producing target real parameters. Model-
ing results obtained in this article are compared
with results from [6], modeling results obtained using
GEANT [7, 8] and theoretical investigations [2, 3].
Comparing results is given in table. According to
this dependence of neutron yield from tantalum and
lead targets on accelerated electron energy is shown
at Fig. 3.
Dependence of neutron yield from targets with
large atomic numbers on the target thickness is shown
at Fig. 4. Results was obtained by MCNPX model-
ing.
From the Fig. 5 it is obvious that effective en-
ergy of the electrons in the neutron-producing target
doesn’t exceed 100 MeV, so to estimate neutron yield
it is sufficient to consider electron energy greater or
equal 100 MeV (electron beam energy is 200 MeV at
Fig. 4).
Fig.3. Neutron yield from the tantalum (a) and lead (b) neutron-producing targets versus electron energy
102
Comparison of simulation and experiment
Target
Mate-
rial
Target
thickness,
cm
Target
square
shape, in
Beam
energy,
MeV
Yield, n/e Yield, n/e
MCNPX
simulation
Ratio,
sim./exp.
Yield, n/e
GEANT4
simulation
Ratio,
sim./exp
Experiment
Cu 5.93 4.5×4.5 21 5.90E-04 6.60E-04 0.89 4.89E-04 0.83
Cu 5.93 4.5×4.5 28 2.14E-03 1.85E-03 0.87 1.58E-03 0.74
Cu 5.93 4.5×4.5 34.3 3.34E-03 3.20E-03 0.96 2.58E-03 0.77
Pb 0.519 4.5×4.5 19 7.00E-04 6.90E-04 0.99 8.10E-04 1.16
Pb 0.519 4.5×4.5 28 1.66E-03 1.35E-03 0.82 1.75E-03 1.05
Pb 0.519 4.5×4.5 34.3 2.10E-03 1.53E-03 0.73 2.19E-03 1.04
Pb 3 4.5×4.5 19 2.46E-03 2.20E-03 0.9 2.39E-03 0.97
Pb 3 4.5×4.5 28 6.70E-03 5.41E-03 0.81 6.14E-03 0.92
Ta 0.374 4.5×4.5 19 5.18E-04 6.02E-04 0.86 6.49E-04 1.25
Ta 0.374 4.5×4.5 28 1.38E-03 1.47E-03 0.94 1.48E-03 1.07
Ta 0.374 4.5×4.5 34.3 1.80E-03 1.82E-03 0.99 1.80E-03 1
Swanson
Ta 8.5 4.5×4.5 10 1.70E-05 1.72E-05 0.99 2.60E-05 1.53
Ta 8.5 4.5×4.5 25 5.29E-03 4.61E-03 0.87 4.19E-03 0.79
Ta 8.5 4.5×4.5 34 9.16E-03 8.68E-03 0.95 7.50E-03 0.82
Ta 8.5 4.5×4.5 100 3.27E-02 3.12E-02 0.95 2.69E-02 0.82
Ta 8.5 4.5×4.5 150 4.97E-02 4.85E-02 0.98 4.26E-02 0.86
Pb 10 4.5×4.5 10 3.22E-05 3.00E-05 0.93 4.10E-05 1.27
Pb 10 4.5×4.5 25 5.73E-03 4.87E-03 0.85 5.25E-03 0.92
Pb 10 4.5×4.5 34 9.65E-03 8.53E-03 0.88 9.29E-03 0.96
Pb 10 4.5×4.5 100 3.36E-02 3.10E-02 0.92 3.41E-02 1.02
Pb 10 4.5×4.5 150 4.36E-02 4.73E-02 0.92 5.14E-02 0.62
Fig.4. Neutron yield from different targets versus
target thickness (electron beam energy 200 MeV)
Fig.5. Neutron yield per energy from tungsten
target versus electron energy
3. CONCLUSIONS
Results of the investigations, carried out in this
article, show that Monte Carlo method can be used
for modeling of the neutron born process in the ir-
radiated with electrons targets from materials with
large atomic numbers, if the database on the electro-
nuclear interactions for these materials exist.
The distinctive feature of our studying is usage
of the targets from non-fission materials. Presence
of the cross-section databases for these materials al-
lows using MCNP code without additional physical
models for simulation processes.
If you have no cross-section databases, you’d used
GEANT4 software, where it is possible to change the
parameters of the physical models, as you need, and
unlike MCNP, GEANT4 is free distributed software.
References
1. N.D. Tufaykov, A.S. Shtan. Basis of the neutron
radiography. M.: ”Atomizdat”, 1975, 256p. (in
Russian).
2. W.P. Swanson. Calculation of neutron yields re-
leased by electronincident on selected materials
// Health Physics. 1978, v.35, p.353-367.
3. W.P. Swanson. Improved calculation of pho-
toneutron yield released by incident electrons //
Health Physics. 1979, v.37, p.347-358.
103
4. I.M. Sobol. The Monte-Carlo method. M.:
”Nauka”, 1968, 64p. (in Russian).
5. MCNP 2.4.0. RSICC computer code collection.
Monte-Carlo N-Particle Transport Code System
for multiparticle and high energy applications.
CCC-715, 2002.
6. W.C. Barber and W.D. George. High-Energy
Physics Laboratory, Stanford university, Stan-
ford, California // Physical Review. 1959, v.116,
No 6, p.1551-1559.
7. GEANT4 Physics Reference Manual. GEANT4
Working Group. CERN, June 21, 2004.
8. I.M. Prokhorets, S.I. Prokhorets, Y.V. Rudy-
chev, M.A. Khazhmuradov, D.V. Fedorchenko.
Questions of the effective Methods choosing for
neutron-physical processes simulation // Prob-
lems of Atomic Science and Technology. Series
”Nuclear Physics Investigations”. 2007, N5(48),
p.131-136.
РАСЧЕТНЫЕ ИССЛЕДОВАНИЯ ВЫХОДОВ НЕЙТРОНОВ С
НЕЙТРОНОПРОИЗВОДЯЩЕЙ МИШЕНИ, ОБЛУЧАЕМОЙ ЭЛЕКТРОНАМИ
И.М. Прохорец, С.И. Прохорец, Е.В. Рудычев, А.И. Скрыпник, Д.В. Федорченко,
М.А. Хажмурадов
Рассмотрено применение программных кодов MCNPX и GEANT для расчета выхода нейтронов из
различных нейтронопроизводящих мишеней, использующих ускоренные электроны из ускорителя. По-
казано, что расчеты по методу Монте-Карло, выполненные при помощи программного кода MCNPX,
хорошо согласуются с имеющимися данными и данными аналитических расчетов.
РОЗРАХУНКОВI ДОСЛIДЖЕННЯ ВИХОДIВ НЕЙТРОНIВ З
НЕЙТРОНОУТВОРЮЮЧОЇ МIШЕНI, ЩО ОПРОМIНЮЄТЬСЯ ЕЛЕКТРОНАМИ
I.М. Прохорець, С.I. Прохорець, Є.В. Рудичев, А.I. Скрипник, Д.В. Федорченко,
М.А. Хажмурадов
Розглянуто використання програмних кодiв MCNPX та GEANT для розрахунку виходу нейтронiв
з нейтроноутворюючих мiшеней, що використовують прискоренi електрони з прискорювача. Доведено,
що розрахунки з використанням методу Монте-Карло та програмного коду MCNPX добре узгоджу-
ються з експериментом i аналiтичними розрахунками.
104
|