Channeling of relativistic electrons and positrons
The quanta-mechanical problem of relativistic electron (positron) movement through the electro-static crystal field for the case of small angle between initial particle momentum and the atomic plane is considered for the case of electron energy larger than several MeV. The analytical expressions f...
Gespeichert in:
| Datum: | 2009 |
|---|---|
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2009
|
| Schriftenreihe: | Вопросы атомной науки и техники |
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/96519 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Channeling of relativistic electrons and positrons / V.L. Morokhovskii // Вопросы атомной науки и техники. — 2009. — № 5. — С. 122-129. — Бібліогр.: 10 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-96519 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-965192025-02-09T13:15:47Z Channeling of relativistic electrons and positrons Каналювання релятивiстських електронiв та позитронiв Каналирование релятивистских электронов и позитронов Morokhovskii, V.L. Электродинамика The quanta-mechanical problem of relativistic electron (positron) movement through the electro-static crystal field for the case of small angle between initial particle momentum and the atomic plane is considered for the case of electron energy larger than several MeV. The analytical expressions for the wave functions for electrons and positrons in the model potentials, which are similar to the state of the ”one-dimensional relativistic atom”, are presented. Розглянуто квантово-механiчна проблема руху релятивiстського електрона (позитрона) в електричному полi кристалу у випадку, коли початковий iмпульс електрона направлений пiд малим кутом вiдносно атомної площини кристалу, для енергiй електронiв бiльших кiлькох МеВ. Приведено аналiтичнi вирази для хвильових функцiй релятивiстського електрона (позитрона) в модельному усередненому потенцiалi суцiльної площини, якi описують зв’язанi стани релятивiстського електрона з атомною площиною, якi подiбнi станам "одновимiрного релятивiстського атома". Рассмотрена квантово-механическая задача движения релятивистского электрона (позитрона) в электрическом поле кристалла в случае, когда начальный импульс электрона направлен под малым углом к атомной плоскости кристалла, для энергий электронов больших нескольких МэВ. Приведены аналитические выражения для волновых функций релятивистского электрона (позитрона) в модельном усредненном потенциале непрерывной плоскости, которые описывают связанные состояния релятивистского электрона с атомной плоскостью, подобные состояниям "одномерного релятивиcтского атома". 2009 Article Channeling of relativistic electrons and positrons / V.L. Morokhovskii // Вопросы атомной науки и техники. — 2009. — № 5. — С. 122-129. — Бібліогр.: 10 назв. — англ. 1562-6016 PACS:29.20.Dh. https://nasplib.isofts.kiev.ua/handle/123456789/96519 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Электродинамика Электродинамика |
| spellingShingle |
Электродинамика Электродинамика Morokhovskii, V.L. Channeling of relativistic electrons and positrons Вопросы атомной науки и техники |
| description |
The quanta-mechanical problem of relativistic electron (positron) movement through the electro-static crystal field for
the case of small angle between initial particle momentum and the atomic plane is considered for the case of electron
energy larger than several MeV. The analytical expressions for the wave functions for electrons and positrons in the
model potentials, which are similar to the state of the ”one-dimensional relativistic atom”, are presented. |
| format |
Article |
| author |
Morokhovskii, V.L. |
| author_facet |
Morokhovskii, V.L. |
| author_sort |
Morokhovskii, V.L. |
| title |
Channeling of relativistic electrons and positrons |
| title_short |
Channeling of relativistic electrons and positrons |
| title_full |
Channeling of relativistic electrons and positrons |
| title_fullStr |
Channeling of relativistic electrons and positrons |
| title_full_unstemmed |
Channeling of relativistic electrons and positrons |
| title_sort |
channeling of relativistic electrons and positrons |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| publishDate |
2009 |
| topic_facet |
Электродинамика |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/96519 |
| citation_txt |
Channeling of relativistic electrons and positrons / V.L. Morokhovskii // Вопросы атомной науки и техники. — 2009. — № 5. — С. 122-129. — Бібліогр.: 10 назв. — англ. |
| series |
Вопросы атомной науки и техники |
| work_keys_str_mv |
AT morokhovskiivl channelingofrelativisticelectronsandpositrons AT morokhovskiivl kanalûvannârelâtivistsʹkihelektronivtapozitroniv AT morokhovskiivl kanalirovanierelâtivistskihélektronovipozitronov |
| first_indexed |
2025-11-26T02:50:02Z |
| last_indexed |
2025-11-26T02:50:02Z |
| _version_ |
1849819570788892672 |
| fulltext |
CHANNELING OF RELATIVISTIC ELECTRONS AND
POSITRONS
V.L. Morokhovskii ∗
National Science Center ”Kharkov Institute of Physics and Technology”, 61108, Kharkov, Ukraine
(Received July 29, 2009.)
The quanta-mechanical problem of relativistic electron (positron) movement through the electro-static crystal field for
the case of small angle between initial particle momentum and the atomic plane is considered for the case of electron
energy larger than several MeV. The analytical expressions for the wave functions for electrons and positrons in the
model potentials, which are similar to the state of the ”one-dimensional relativistic atom”, are presented.
PACS: PACS:29.20.Dh.
1. INTRODUCTION
Directional effects of positively charged heavy parti-
cles, which are penetrating through the single crystal
targets, can be investigated in the frame of the classi-
cal theory of Lindhard [1], where the applicability of
classical theory is justified. Such a way the finite
motion of positively charged heavy particles along
the crystal atomic plane (or atomic string) can be
described. This directional effect, which is a result
of correlated small angular scattering on the multi-
tude of crystal atoms, which belongs to the plane (or
string) named ”channeling”. Plane channeling can be
described with good exactness using crystal potential
averaged over the atomic plane.
Investigation of the directional effects of electrons
(positrons), which are penetrating through the sin-
gle crystal targets, requires different theoretical de-
scriptions for different particle energies. It is well-
known that for electrons with kinetic energy in the
range from tens eV up to a few hundreds keV the
angular distribution of scattered electrons in the thin
mono-crystal targets demonstrate diffraction pattern
[2]. For electrons in such energy range a classical
approach fails, and the directional effects can be de-
scribed in the terms of a few beam dynamical dif-
fraction theory. For particle energies from hundreds
keV up to the several Mev the wave packet is com-
posed of a large number of partial waves and thus
requires a many-beam description. If electrons with
energies less than several MeV move along the atomic
plane, they can not create the bound states with sep-
arate crystal plane. Only if electron energy is larger
than several MeV, it can create the bound state with
separate crystal plane, which can be considered as
”one dimensional atom”. Such result for electrons
in quantum-mechanical description contrasts with re-
sult for heavy particles in classical description, where
finite motion is possible for arbitrary small kinetic
energies. For electron with energies are larger than
several MeV, the wave packet localized well enough,
particularly in the transverse plane. With increasing
the electron energy the number of partial plane waves
increasing drastically, and therefore we need to search
another type of basis functions, which are not similar
to the plane waves, and which are suitable for pre-
sentation of electron bound state by superposition of
small number of waves. The convenient basis can be
created from solutions of Dirac equation with model
continued plane potentials, which have simple ana-
lytical form and small difference from the real crystal
potential. The task of the present work is to search
such solutions. It should be noted that such quan-
tum description becomes inconvenient in the case,
when electron creates a large number of bound states
with small difference between adjacent energy levels,
which are realized at electron energies order of GeV
and larger. In this case it’s more convenient to apply
the quasi-classical and classical descriptions [3].
2. PLANAR CHANNELING
We are interested in the investigation of the rela-
tivistic electron motion in the crystal potential in the
case, when initial electron momentum ~p creates small
angle respectively one of the main crystal planes (for
example plane Y Z in the Cartesian coordinate sys-
tem XY Z). We assume that the projection of the
electron momentum ~p on the X-axes satisfies the in-
equality p2
x/(2mγ) < V ′, where V ′ is the value of the
potential energy of the interaction between relativis-
tic particle and the atomic plane (V ′ = | ± eUp(x)|,
where Up(x) is the plane potential). In our task the
action of the real plane potential can be replaced by
action of the averaged potential over the square of the
crystal plane. The plane potential Up(x) creates the
∗E-mail: victor@kipt.kharkov.ua
122 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2009, N5.
Series: Nuclear Physics Investigations (52), p.122-129.
potential prison for negative charged particle. The
potential of the couple of planes creates the potential
prison for positive charged particle. So the electron
(positron) motion is characterized by its localization
near the potential deep minimum and may be con-
sidered as analogy with ”relativistic one-dimensional
atom”, that is moving along the crystal plane in the
direction ~n = ~ey sin(θ) + ~ez cos(θ). So we will search
solution of the Dirac equation
ih̄
∂
∂t
ψ = Ĥ (1)
with Hamiltonian
Ĥ = c~̂α~̂p + β̂mc2 ± eUp(x),
where one-dimensional potential Up(x) is the poten-
tial of the separated crystal plane (or channel) aver-
aged over the square in the Y Z plane. One easily veri-
fies the commutation relations and the corresponding
constants of motion
[
Ĥ, ih̄
∂
∂t
]
= 0, with eigenvalue E (2)
[
Ĥ, p̂y
]
= 0, with eigenvalue py (3)
[
Ĥ, p̂z
]
= 0, with eigenvalue pz (4)
[
Ĥ, p̂x
]
6= 0. (5)
Using integrals of motion E, py, pz one can look for
solution of Dirac equation in the following form
ψ(~r, t) = ψ(x)ei(pyy+pzz−Et)/h̄. (6)
So as the second order differential equations may be
solved only for some simple potentials, and taking
into account that coordinates of localization centers
for particles with different sign do not coincide, we
will use different model functions V (x) = ±eUp(x)
for description the potential energies of electron and
positron in the plane potential. Therefore solutions
for electron and positron will be considered sepa-
rately, and Dirac equation in the considered case has
the form:
[
α̂1∇x − iV
h̄c
]
ψ(x) = (7)
=
i
h̄c
[
E −mc2β̂ − p2cα̂2 − p3cα̂3
]
ψ(x).
Let us designate the momentum component, which
is parallel to the atomic plane by h̄~k and angle
between ~k and axis ~z by θ. Then p2 = h̄k sin θ
and p3 = h̄k cos θ. If we multiply equation (7) from
the right side by α̂1 and take into account that
α̂1α̂2 ≡ iŜ3 and α̂1α̂3 ≡ −iŜ2, we can represent Dirac
equation (7) in the following form:
[
∇x − k(sin θŜ3 − cos θŜ2)
]
ψ(x) = (8)
=
i
h̄c
[
(E + V (x)) α̂1 −mc2α̂1β̂
]
ψ(x).
Expression sin θŜ3 − cos θŜ2 is equal the x projection
of the vector product of the spin operator ~̂S on the
direction ~n = ~k/k i.e. [ ~̂S, ~n]x. The eigenvalues of op-
erator sin θŜ3 − cos θŜ2 are:
λ1 = +1, λ2 = −1, λ3 = +1, λ4 = −1, (9)
and corresponding eigenvectors are:
ū1 =
1
−iξ
0
0
, ū2 =
−iξ
1
0
0
,
ū3 =
0
0
1
−iξ
, ū4 =
0
0
−iξ
1
, (10)
where
ξ(θ) = (cos(θ/2)− sin(θ/2))/(cos(θ/2) + sin(θ/2)).
Eigenvectors (10) satisfies the following condition:
ūiū
+
j = ū+
i ūj = (1 + ξ2)δij . (11)
It’s easy to show, that:
α̂1ū1 = ū4, α̂1ū2 = ū3,
α̂1ū3 = ū2, α̂4ū1 = ū1;
α̂1β̂ū1 = ū4, α̂1β̂ū2 = ū3,
α̂1β̂ū3 = −ū2, α̂1β̂ū4 = −ū1. (12)
If we search solution of the Dirac equation (8) in the
form
ψ(x) =
4∑
j=1
ūjfj(x), (13)
where fj(x) are arbitrary functions, and use the con-
ditions (11) and (12), we obtain the following system
of equations:
∇xf1(x)− kf1(x) =
i
h̄c
[
E + mc2 + V (x)
]
f4(x),
∇xf2(x) + kf2(x) =
i
h̄c
[
E + mc2 + V (x)
]
f3(x),
∇xf3(x)− kf3(x) =
i
h̄c
[
E −mc2 + V (x)
]
f2(x),
∇xf4(x) + kf4(x) =
i
h̄c
[
E −mc2 + V (x)
]
f1(x).
(14)
The system of four equations (14) is shared into two
pairs of independent and identical systems of equa-
tions. Using the first equation we can write:
f4(x) = − ih̄c (∇x − k)
E + mc2 + V (x)
f1(x). (15)
Substituting this expression into the fourth equation
of the system (14) we obtain the second order differ-
ential equation:
[
h̄2c2
2E
∇2
xx +
E2 − h̄2k2c2 −m2c4
2E
+ V (x)+ (16)
+
V 2(x)
2E
− h̄2c2
2E
V ′(x)x (∇x − k)
E + mc2 + V (x)
]
f1(x) = 0.
123
The last two terms in (16) are small, and in the
first approximation we can neglect them. Then for
obtaining basis functions we can use model poten-
tial V (x), which has sufficient analytical form and
small difference from the real potential. In the first
approximation function f1(x) does not differ from
f2(x), because equation for f2(x) differs from (16)
only by the sign near the k in the small term. Gen-
eral solution of the Dirac equation for electrons can
be represented in the form:
ψ(−e)(x) =
A
(
ū1 − ih̄c
∇x − k
E + mc2 + V (x)
ū4
)
f1(x) +
B
(
ū2 − ih̄c
∇x + k
E + mc2 + V (x)
ū3
)
f2(x), (17)
and for positrons in the form:
ψ(+e)(x) =
C
(
ū3 − ih̄c
∇x − k
E −mc2 + V (x)
ū2
)
f3(x) +
D
(
ū4 − ih̄c
∇x + k
E −mc2 + V (x)
ū1
)
f4(x), (18)
where arbitrary constants A, B, C and D become
definite after using the boundary conditions.
2.1. ELECTRON WAVE FUNCTIONS
2.1.1. Model potential
The averaged crystal plane potential can be repre-
sented (in units mec
2) in the form of the sum of po-
tentials of the separate planes Up(x):
U(x) =
+∞∑
n=−∞
Up(x + d · n), (19)
Up(x) = 2Zα
νd
vc
3∑
i=1
aiUi(x), where :
Ui(x) =
π
βi
exp(−βix) exp(u2β2
i )×
×
{
1
2
exp(2βix)erfc(
x
2u
+ uβi) + 1−
− 1
2
erfc(
x
2u
− uβi)
}
,
(20)
Z is the atomic number, α = 1/137, ν is the number
of atoms in elementary cell, vc is the volume of the
elementary cell, d is the distance between planes, u2
is the root mean atomic thermal displacement. Here
we used the Moliere-type of atomic potential, where
constants ai and βi defined as:
ai = {0.1; 0.55; 0.35} (21)
bi = {6.0; 1.2; 0.3}
βi =
(
Z1/3/121
)
bi.
At a distance |x| ≥ d from the plane the potential
Ui(x) has the following form Ui(x) ≈ π
βi
exp(−βi|x|).
We get the sum of potentials of all planes (19) by
adding to Ui(x) the sum of asymptotical plane po-
tentials from (20), which is a geometrical progression
π
βi
∞∑
n=1
{exp[−βi(dn− x)] + exp[−βi(dn + x)]} =
=
2π
βi
exp(−βid)
1− exp(−βid)
ch(βix). (22)
In order to investigate equation (16) let’s suppose
that potential energy of interaction between relativis-
tic electron with plane potential can be presented
by model function V (x) = V0/ ch2(x/x0) + C, where
constants V0, x0 and C can be obtained by fitting
the model potential to the corresponding exact crys-
tal plane potential [4]. For the case of relativis-
tic electron motion with Lorentz factor γ ∼ 10 near
(100)-plane of the Si crystal the orders of these con-
stants are: |V0| ∼ 10−4mc2 and x0 ∼ 1.3× 102h̄/mc
(look at (20)).
Fig.1. Potential energy of electron interacting
with continuum potential of (110) plane of dia-
mond crystal. Solid line represents the model
potential V (x) = V0/ch2(x/x0) + C, where: C =
−47.3085 eV , V0 = −21.0048 eV , x0 = 0.2215 Å.
Dashed line represents potential calculated using for-
mulas 19 and 20
2.1.2. Solution of the Schrödinger wave equ-
ation with potential V (x) = V0/ ch2(x/x0) + C
Representing 2E = 2mc2γ, we can see, that equation
(16) is a Schrödinger wave equation for the particle
with mass M = mγ. The last two terms in the rec-
tangular brackets of (16) are small corrections to the
potential energy V (x). Total expression of the po-
tential energy for our case looks like V (x)(1 + O(x)),
where O(x) ∼ 10−3. Let’s neglect small terms in
Schrödinger wave equation (16), replace V (x) by
model potential V (x) = V0/ ch2(x/x0) + C and
[
− h̄2
2M
∇2
xx +
V0
ch2(x/x0)
]
f1(x) = E⊥f1(x), (23)
124
where E⊥ = (E2 − h̄2k2c2 −m2c4 − 2EC)/2E. As
it was first shown in [5] and [6], the Schrödinger
equation with such potential (23) can be solved
analytically. We will go on to the new variable
y = ch2(x/x0), and then we obtain equation:
y(1−y)f ′′1yy +
(
1
2
− y
)
f ′1y−
(
u
y
− κ2
)
f1 = 0, (24)
where
−κ2 = [E2 −m2c4 − h̄2k2c2]x2
0/(4h̄2c2);
u =
1
2
(
V0
mc2
)(
2πx0
λc
)2
γ; (25)
Then with the help of substitutions f = yν · w(y),
where while ν-is some arbitrary constant, we’ll ob-
tain the equation
y(1− y)w′′yy +
[
(2ν +
1
2
)− (2ν + 1)y
]
w′y +
+
[
(ν2 − ν
2
− u)y−1 − (ν2 − κ2)
]
w = 0, (26)
which turns to hyper geometric equation of Gauss if
a coefficient equates to zero with y−1. Setting this
coefficient to be zero, we get the necessary value of ν
ν =
(
1±√1 + 16u
)
/4. (27)
For reducing the hyper geometric equation to the
standard form, let’s introduce some new constants
a = ν − κ, b = ν + κ, c = 2ν +
1
2
, (28)
where κ was defined in (25) (κ > 0). We are
interested in solution of the equation (26) in the
area of changing the argument 0 ≤ |x| < ∞, which
corresponds to the sphere of changing the function
1 ≤ |y| < ∞. The standard sphere of changing the
argument of hyper geometrical function is a half line
−∞ < z ≤ 0. So going on to the variable quantity
z = 1− y we’ll satisfy this requirement and obtain
the following equation:
z(1− z)w′′zz +[c∗− (a+ b+1)z] ·w′z −abw = 0, (29)
where c∗ = a + b + 1− c ≡ 1/2. Solution of the hy-
pergeometric Gauss equation (29) may be presented
by series
w(z) = zδ
∞∑
k=0
Ckzk,
where coefficients Ck satisfy the following request:
Ck+1 = Ck
(a + k + δ)(b + k + δ)
(c∗ + k + δ)(1 + k + δ)
,
and δ will be determined from the equation
δ(δ + c∗ − 1) = 0.
So as c∗ is not integer number and therefore the hy-
pergeometric Gauss equation (29) has two linear in-
dependent solutions:
w1(z) = F (a, b, c∗; z) =
= 1 +
ab
c∗
z +
a(a + 1)b(b + 1)
c∗(c∗ + 1)
z2
2!
+
+
a(a + 1)(a + 2)b(b + 1)(b + 2)
c∗(c∗ + 1)(c∗ + 2)
z3
3!
+ ..., (30)
and
w2(z) =
= z1−c∗
(
1 +
(a− c∗ + 1)(b− c∗ + 1)
2− c∗
z + ...
)
=
= z1−c∗F (a− c∗ + 1, b− c∗ + 1, 2− c∗; z). (31)
So the general solution of hyper geometric equation
(29) has the following form:
w(z) = A ·F (a, b,
1
2
; z)+B · z1/2F (a+
1
2
, b+
1
2
,
3
2
; z),
(32)
where we denote the hyper geometric Gauss functions
by F (a, b, c; z) and the arbitrary constants by A and
B. While A = 1 and B = 0 we’ll obtain the standard
even solution of the equation (24)
f
(+)
1 (x) = ch2ν(x/x0)F (a, b,
1
2
;−sh2(x/x0)). (33)
While A = 0 and B = i - we’ll obtain the odd solution
of (24)
f
(−)
1 (x) = ch2ν(x/x0)sh(x/x0) ·
F (a +
1
2
, b +
1
2
,
3
2
;−sh2(x/x0)). (34)
Wave functions f+
1 (x) and f−1 (x) should be normal-
ized therefore it is necessary to satisfy the condition
lim|x|→∞ f±1 (x/x0) = 0. For investigation of solu-
tions of (33) and (34) with large values of the ar-
gument let’s use asymptotic equations:
ch(x/x0) ≈ 2−1 exp(|x/x0|),
sh(x/x0) ≈ ±2−1 exp(|x/x0|),
−sh2(x/x0) ≈ −2−2 exp(2|x/x0|), (35)
and let’s use the identity
F (a, b, c; z) =
Γ(c)Γ(b− a)
Γ(b)Γ(c− a)
(−z)a ·
·F (a, 1− c + a, 1− b + a;
1
z
) +
+
Γ(c)Γ(a− b)
Γ(a)Γ(c− b)
(−z)−b ·
·F (b, 1− c + b, 1− a + b;
1
z
). (36)
While argument z is increasing infinitely, the hyper
geometric functions in the right part of the equation
125
(36) run to the unity. Thus while the values of the ar-
gument are big, the asymptotic equations take place:
f
(+)
1 (x) ≈ 2−2ν exp
(
2ν
∣∣∣∣
x
x0
∣∣∣∣
)
Γ
(
1
2
)
×
[
Γ(b− a)
Γ(b)Γ( 1
2 − a)
22a exp
(
−2a
∣∣∣∣
x
x0
∣∣∣∣
)
+
Γ(a− b)
Γ(a) · Γ( 1
2 − b)
22b exp
(
−2b
∣∣∣∣
x
x0
∣∣∣∣
)]
,
(37)
and
f
(−)
1 (x) ≈ ±2−(2ν+1) exp
(
(2ν + 1)
∣∣∣∣
x
x0
∣∣∣∣
)
Γ
(
3
2
)
×
[
Γ(b− a)
Γ(b + 1
2 )Γ(1− a)
22a+1 exp
(
−(2a + 1)
∣∣∣∣
x
x0
∣∣∣∣
)
+
Γ(a− b)
Γ(a + 1
2 ) · Γ(1− b)
22b+1 exp
(
−(2b + 1)
∣∣∣∣
x
x0
∣∣∣∣
)]
.
In the last expression sign ”+” corresponds to x > 0,
and ” − ” corresponds to x < 0. The first and the
second items in brackets of the expressions (37) and
(38) behave themselves as exp(κ|x|) and exp(−κ|x|).
Since for the bound states conditions κ is real and is
larger than zero therefore in order to obtain normal-
ized solution it is necessary to go to zero the coeffi-
cients near exp(κ|x|). This is possible when functions
Γ(ζ)−1 turn to zero. As a result we obtain arguments
ζ are equal integer numbers −n, (n = 0; 1; 2; ...). This
condition is necessary, but not enough. It should be
added by one more. In all cases of physical applica-
tion of Gauss hyper geometric functions the condi-
tion c− a > 0 or c− b > 0 should be satisfied, there-
fore in expression (27) before the square root we
choose the sign ” − ”, and it guarantees the values
to be ν < 0. Let’s demand, that b = −n for the even
function ψ+(x) and b + 1/2 = −n, for the odd ψ−(x)
function. Then to determine the energy levels of the
bound states we’ll obtain the conditions:
κ = −ν − n (38)
for the even function, and
κ = −ν − n− 1/2 (39)
for the odd function. Then taking into account (16)
and our definition (25), we see that the energy of the
crosswise motion E⊥ respectively the crystal plane we
can present in the form E⊥ = h̄2c2k⊥
2/2E. so finally
we obtain
E
(n)
⊥ = − h̄2c2
2E
(
2ν + n
x0
)2
, (40)
where even n corresponds to the even function, and
the odd n corresponds the odd function. Such de-
pendence is shown on Fig.2. Analogous result was
obtained in [7] and [8].
Fig.2. Transverse electron energy as a function
of γ = E/mc2 in the plane (110) of the diamond
crystal for quantum numbers n = 0, ..., 15
While the condition that was discussed above is ful-
filled, then the hyper geometric rows in the expres-
sions (37) and (38) are broken on the term with
number n and thus they are degenerated into Jacobi
polynomials. Therefore the physical solutions of the
equation (23) have the following forms:
f
(+)
1 (n, x) = Nnch2ν(x/x0)× (41)
Gn(2ν + n/2, 1/2;−sh2(x/x0)),
f
(−)
1 (n, x) = Nnch2ν(x/x0)sh(x/x0)×
Gn(2ν + (n− 1)/2, 3/2;−sh2(x/x0)),
where
Gn(p, q; z) ≡ 1 +
n∑
k=1
(−1)k
(
n
k
)
× (42)
(p)(p + 1)...(p + k − 1)
q(q + 1)...(q + k − 1)
zk,
and
(
n
k
)
are binomial coefficients.
2.1.3. Normalization
Functions f
(+)
1 (n, x) and f
(−)
1 (m,x) for m 6= n
are orthogonal, because they are eigenfunctions
of Hermitian operator. Besides they must be
normalized, i.e. must satisfy the condition〈
f
(±)
m (x) | f (±)
n (x)
〉
= δmn. Let us designate in (42)
ck - the coefficient with zk. Then we can write down
the condition of normalizing of wave functions f±(x)
in the following form:
〈
f (±)
m (x) | f (±)
n (x)
〉
= N2
n
n∑
k=0
n∑
j=0
ckcjx0 ×
∫ +∞
−∞
ch4ν(x/x0)sh2(k+j)(x/x0)dx = 1. (43)
Integral in (43) can be transformed to the new vari-
able t = th(x/x0) and can be represented in the form
126
of:
x0
∫ 1
0
(1− t2)ptqdt = x0B(p, q) ,
B(p, q) = Γ(p)Γ(q)/Γ(p− q) , (44)
where designations p = k + j + 1/2 and q = −(ν +
2 + k + j) are used. Whence we find out that for
normalizing of functions which are presented by ex-
pression (43) it is necessary to multiply them by the
normalizing factor:
Nn =
x0
n∑
k=0
n∑
j=0
ckcjB(p, q)
−1/2
. (45)
Samples of bound state electron wave functions are
shown on Fig.3 and in [4].
Fig.3. Bound state wave functions (n = 0; 1; 2; 3)
for electrons with Lorentz factor γ = 500, which
moving along the plane (110) of the diamond crystal
2.2. POSITRON WAVE FUNCTIONS
2.2.1. Solution of the Schrödinger wave
equation for channeled positrons
Potential energy of positron interaction with planar
continuous crystal potential near the center of iso-
lated plane channel has its minimum, and in this re-
gion it can be approximated by parabolic function
V (x) = Kx2/2 + C, (Fig.4), [9]. We can see that
such simple model potential is a good enough ap-
proximation for the planar channel potential. In this
case from the main equation (16) we obtain one-
dimensional equation for function f3(x) , which is
well-known equation of harmonic oscillator:
[
− h̄2
2M
∇2
xx +
Kx2
2
]
f3(x) = E⊥f3(x), (46)
where designation E⊥ = ((E + C)2 − h̄2k2c2 −
m2c4)/2E is used. Introducing new variable z = αx
and chose α to be α = (KM/h̄2)1/4, we obtain equa-
tion: (∇2
z + µ− z2
)
f(z) = 0, (47)
where µ = 2E⊥/h̄ωc and ωc = (K/M)1/2 is a clas-
sical oscillator frequency. Such representation is con-
venient because it operates by dimensionless values.
Fig.4. Potential energy of positron interacting
with continuum potential of (110) plane of diamond
crystal. Solid line represents the model potential
V (x) = C + (x/x0)2, where: C = 47.04 ± 0.04 eV ,
x0 = 570.2215 Å. Dashed line represents potential
calculated using formulas 19 and 20
Asymptotic solution of the equation (47) for z →∞
must satisfy the equation (∇2
z − z2)f(z) = 0 . Gen-
eral solution of this equation is C1e
−z2/2 + C2e
z2/2 .
Normalized solution must satisfy the asymptotic con-
dition limz→∞ f(z) = 0 i.e. we must put C2 = 0 .
So we must look for the solution of (47) in the form
f(z) = e−z2/2H(z) . Then we obtain equation for
function H(z)
H ′′(z)− 2zH ′(z) + (µ− 1)H(z) = 0, (48)
that is the Hermite’s equation. Let us look
for the solution of (48) in the form of series
H(z) = zs
∑∞
k=0 akzk . Substituting such series into
equation (48) one can obtain the requirements
(s+k+2)(s+k+1)ak+2−(2s+2k+1−µ)ak = 0. (49)
From the first equation for index k = 0
s(s− 1)a0 = 0 . If a0 6= 0 , then s = 0 or s = 1 .
The second equation (s + 1)sa1 = 0 also satisfies by
s = 0 . Then it may be a0 6= 0 or a0 = 0 . But if
s = 1 then must be a1 = 0 . General solution of (48)
looks like
H(z) = e−z2/2 ×{
a0
[
1 +
∞∑
p=1
(−1)p (µ− 1)...(µ− 4p + 3)
(2p)!
z2p
]
+
a1z
[
1 +
∞∑
p=1
(−1)p (µ− 3)...(µ− 4p + 1)
(2p + 1)!
z2p
]}
, (50)
where a0 and a1 are arbitrary constants. The first
term is a sum of even powers of z and the second term
is a sum of odd powers of z. In order to obtain the
normalized solutions we must choose µ = 4p + 1 and
127
a1 = 0 , or µ = 4p + 3 and a0 = 0 . Under this re-
quirement our series degenerate into the finite sums.
In the first case we obtain the even solution and in the
second case the odd one. Let us introduce new princi-
ple integer number n = 2p if n even and n = 2p + 1
if n odd. Then we can join both solutions into the
general expression. Each principle quantum number
n corresponds to the positron transverse energy E
(n)
⊥
E
(n)
⊥ = C + h̄ωcγ
−1/2(n + 1/2). (51)
Such dependence is shown on the Fig.5.
Fig.5. Transverse positron energy as a function
of γ = E/mc2 in the plane (110) of the diamond
crystal for quantum numbers n = 0, ..., 25
Corresponding wave functions are represented by
formula:
f (±)
n (x) = Nne−α2x2/2Hn (αx) , (52)
where Hn(αx) are the Hermite’s polynomials, Nn
are normalization factors.
2.2.2. Normalization
Functions f
(+)
1 (n, x) and f
(−)
1 (m, x) for m 6= n
are orthogonal, because they are eigenfunctions
of Hermitian operator. Besides they must be
normalized, i.e. must satisfy the condition〈
f
(±)
m (αx) | f (±)
n (αx)
〉
= δmn. Such property of wave
functions (52) can be proved by using Hermitian pro-
ducing function1. We can write:
∫ ∞
−∞
e−t2+2txe−s2+2sxe−x2
dx =
∞∑
n,m=0
tnsm
n!m!
∫ ∞
−∞
Hn(x)Hm(x)e−x2
dx . (54)
After integration on the left we obtain the following
result:
π1/2e2ts =
∞∑
n=0
(2ts)n
n!
. (55)
Equating the coefficients near the equal powers of t
and s in the right part of (57) and in the expression
(55), we obtain:
∫ ∞
−∞
Hn(αx)Hm(αx)e−α2x2
dx =
{
π1/22nn!/α, n = m,
0, n 6= m.
(56)
So the orthogonality of the wave function is proved,
and the normalization factors Nn are:
Nn =
(
α
2nn!
√
π
)1/2
. (57)
Samples of bound state electron wave functions with
principle quantum numbers n = 0, 1, 2, 3, 4 are shown
on Fig.6.
Fig.6. Bound state wave functions (n = 0; 1; 2; 3, 4)
for positrons with γ = 500, which are moving along
the plane (110) of the diamond crystal
2.2.3. Population probabilities
The distribution in the transverse energy varies sig-
nificantly when the particle progresses through a
crystal due to transitions between the transverse
states. Here we shall not consider this problem. Now
we shall consider only the initial distribution in the
positron transverse energy at the crystal entrance.
We propose that the particle enters the crystal at
the definite angle θ0 respectively to the plane. The
probability Pn(q) of capture to the state |n〉, where
q = Eθ0/h̄c, can be expressed in the terms of the
plane wave expansion in the transverse wave func-
tions:
Pn(q) = |An(q)|2 ,
An(q) =
∫ ∞
−∞
f (±)
n (αx)eiqxdx . (58)
1Hermitian producing function is:
e−t2+2tx =
∞X
n=0
Hn(x)
n!
tn . (53)
128
Using the integral representation of the Hermitian
functions:
Hn(x) = C
∫ +0
−∞
e−t2+2xtt−(n+1)dt
and changing the order of the priority of integration,
we obtain:
An(q) = Nn(−i)−n(2π)1/2α−1e−(q/α)2/2Hn(q/α) .
(59)
3. OUTLOOK
The wave functions, which was obtained above for
the model plane potentials, can be combined with or-
thogonalized plane waves and used as basis functions
for representation the wave functions of relativistic
particles in the crystal potential. Using these basis
functions, we can modify the method of numerical
calculations, which was developed by [10] for calcula-
tion the wave functions of the crystal electrons, and
apply them for obtaining wave functions of the rela-
tivistic electrons and positrons in the close to reality
crystal potential.
References
1. J. Lindhard. Influence of crystal lattice on mo-
tion of energetic charged particles // K. Dansk.
Vid. Selsk. Mat. Phys. Medd. 1965, 34, p.1-64.
2. C.J.Davisson, L.H.Germer. Diffraction of elec-
trons by a crystal of nickel //Phys. Rev. 1927,
v.30, p.705.
3. A.I. Akhiezer, N.F. Shul’ga. High-Energy Electro-
dynamics in Matter. Amsterdam: ”Gordon and
Breach”, 1996, 388 p.
4. V.L.Morokhovskii. Wave functions of the bound
states of relativistic electrons in crystal for elec-
tron movement along the crystal plane: Preprint,
M: ”CNIIatominform”. 1987, 6p. (in Russian).
5. N. Rosen, P.M. Morse. On the vibrations of po-
liatomic moleculs // Phys. Rev. 1932, v.42, p.210.
6. G. Pöschl and E. Teller. Bemerkungen zur quan-
tenmechanik des anharmonischen oszillators //
Zs. Phys. 1933, v.83, p.143 (in German).
7. V.A.Bazylev, V.I. Glebov, N.K. Zhevago. Depen-
dence of the radiation spectra from channeled
electrons on their energy // Radiation Effects.
1981, v.56, p.99-104.
8. K. Komaki, F. Fujimoto. Energy levels of chan-
neled electrons and channeling radiation // Ra-
diation Effects. 1981, v.56, p.13-16.
9. M.A. Kumakhov, R. Wedell. Theory of radiation
of relativistic channelled particles // Phys. stat.
sol. 1977, v.84(b), p.581.
10. C.Herring. A new method of calculating wave
functions in crystals // Phys. Rev. 1940, v.15,
p.1169.
КАНАЛИРОВАНИЕ РЕЛЯТИВИСТСКИХ ЭЛЕКТРОНОВ И ПОЗИТРОНОВ
В.Л. Мороховский
Рассмотрена квантово-механическая задача движения релятивистского электрона (позитрона) в
электрическом поле кристалла в случае, когда начальный импульс электрона направлен под малым
углом к атомной плоскости кристалла, для энергий электронов больших нескольких МэВ. Приведены
аналитические выражения для волновых функций релятивистского электрона (позитрона) в модель-
ном усредненном потенциале непрерывной плоскости, которые описывают связанные состояния ре-
лятивистского электрона с атомной плоскостью, подобные состояниям "одномерного релятивиcтского
атома".
КАНАЛЮВАННЯ РЕЛЯТИВIСТСЬКИХ ЕЛЕКТРОНIВ ТА ПОЗИТРОНIВ
В.Л. Мороховський
Розглянуто квантово-механiчна проблема руху релятивiстського електрона (позитрона) в електрич-
ному полi кристалу у випадку, коли початковий iмпульс електрона направлений пiд малим кутом вiд-
носно атомної площини кристалу, для енергiй електронiв бiльших кiлькох МеВ. Приведено аналiтичнi
вирази для хвильових функцiй релятивiстського електрона (позитрона) в модельному усередненому
потенцiалi суцiльної площини, якi описують зв’язанi стани релятивiстського електрона з атомною пло-
щиною, якi подiбнi станам "одновимiрного релятивiстського атома".
129
|