Research complex linac-300 upgrade project and the lines of nuclear research
The paper describes the problems of upgrading the research complex LINAC-300 and the program of physical studies expected to be performed at it. The acceleration complex LINAC-300 includes three electron beam ejection channels, the beam translation system and the spectrometer SP-95. Some special f...
Saved in:
| Published in: | Вопросы атомной науки и техники |
|---|---|
| Date: | 2009 |
| Main Authors: | , , , , , , , , , , , |
| Format: | Article |
| Language: | English |
| Published: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2009
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/96655 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Research complex linac-300 upgrade project and the lines of nuclear research / A.Yu. Buki, A.N. Dovbnya, S.P. Gokov, V.I. Kasilov, S.S. Kochetov, V.A. Kushnir, V.V. Mitrochenko, L.A. Makhnenko, P.L. Makhnenko, T.F. Nikitina, N.G. Shevchenko, O.A. Shopen // Вопросы атомной науки и техники. — 2009. — № 5. — С. 134-140. — Бібліогр.: 2 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-96655 |
|---|---|
| record_format |
dspace |
| spelling |
Buki, A.Yu. Dovbnya, A.N. Gokov, S.P. Kasilov, V.I. Kochetov, S.S. Kushnir, V.A. Mitrochenko, V.V. Makhnenko, L.A. Makhnenko, P.L. Nikitina, T.F. Shevchenko, N.G. Shopen, O.A. 2016-03-18T21:24:05Z 2016-03-18T21:24:05Z 2009 Research complex linac-300 upgrade project and the lines of nuclear research / A.Yu. Buki, A.N. Dovbnya, S.P. Gokov, V.I. Kasilov, S.S. Kochetov, V.A. Kushnir, V.V. Mitrochenko, L.A. Makhnenko, P.L. Makhnenko, T.F. Nikitina, N.G. Shevchenko, O.A. Shopen // Вопросы атомной науки и техники. — 2009. — № 5. — С. 134-140. — Бібліогр.: 2 назв. — англ. 1562-6016 PACS:29.20Ej, 29.17.+w https://nasplib.isofts.kiev.ua/handle/123456789/96655 The paper describes the problems of upgrading the research complex LINAC-300 and the program of physical studies expected to be performed at it. The acceleration complex LINAC-300 includes three electron beam ejection channels, the beam translation system and the spectrometer SP-95. Some special features of already upgraded systems of the complex LINAC-300 are considered in detail, as well as the plan of activities for its further modernization is given together with the expected electron beam characteristics. Special attention is paid to the program of physical investigations that are underway or expected to be performed at the experimental complex. Робота присвячена питанням реконструкцiї дослiдницького комплексу ЛПЕ-300 та програмi фiзичних дослiджень якi на ньому плануються. У прискорювальному комплексi ЛПЕ-300 є в наявностi три канала виводу електронного пучка, система паралельного переносу та спектрометр СП-95. В роботi докладно описано особливостi модернiзованих систем комплексу ЛПЕ-300, а також наведено план робiт що до його подальшої реконструкцiї та характеристики електронного пучка що очiкуються. Окрема увага надiляється програмi фiзичних дослiджень, якi проводяться та якi планується проводити на експериментальному комплексi. Работа посвящена вопросам реконструкции исследовательского комплекса ЛУЭ-300 и программе планируемых на нем физических исследований. В ускорительном комплексе ЛУЭ-300 имеется в наличии три канала вывода электронного пучка, система параллельного переноса и спектрометр СП-95. В работе подробно описаны особенности модернизированных систем комплекса ЛУЭ-300, а также приведен план работ по его дальнейшей реконструкции и ожидаемые характеристики электронного пучка. Отдельное внимание уделяется программе физических исследований, проводимых и планируемых на экспериментальном комплексе. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Теория и техника ускорения частиц Research complex linac-300 upgrade project and the lines of nuclear research Проект реконструкцiї дослiдницького комплексу ЛПЕ-300 та напрямок ядерних дослiджень Проект реконструкции исследовательского комплекса ЛУЭ-300 и направления ядерных исследований Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Research complex linac-300 upgrade project and the lines of nuclear research |
| spellingShingle |
Research complex linac-300 upgrade project and the lines of nuclear research Buki, A.Yu. Dovbnya, A.N. Gokov, S.P. Kasilov, V.I. Kochetov, S.S. Kushnir, V.A. Mitrochenko, V.V. Makhnenko, L.A. Makhnenko, P.L. Nikitina, T.F. Shevchenko, N.G. Shopen, O.A. Теория и техника ускорения частиц |
| title_short |
Research complex linac-300 upgrade project and the lines of nuclear research |
| title_full |
Research complex linac-300 upgrade project and the lines of nuclear research |
| title_fullStr |
Research complex linac-300 upgrade project and the lines of nuclear research |
| title_full_unstemmed |
Research complex linac-300 upgrade project and the lines of nuclear research |
| title_sort |
research complex linac-300 upgrade project and the lines of nuclear research |
| author |
Buki, A.Yu. Dovbnya, A.N. Gokov, S.P. Kasilov, V.I. Kochetov, S.S. Kushnir, V.A. Mitrochenko, V.V. Makhnenko, L.A. Makhnenko, P.L. Nikitina, T.F. Shevchenko, N.G. Shopen, O.A. |
| author_facet |
Buki, A.Yu. Dovbnya, A.N. Gokov, S.P. Kasilov, V.I. Kochetov, S.S. Kushnir, V.A. Mitrochenko, V.V. Makhnenko, L.A. Makhnenko, P.L. Nikitina, T.F. Shevchenko, N.G. Shopen, O.A. |
| topic |
Теория и техника ускорения частиц |
| topic_facet |
Теория и техника ускорения частиц |
| publishDate |
2009 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Проект реконструкцiї дослiдницького комплексу ЛПЕ-300 та напрямок ядерних дослiджень Проект реконструкции исследовательского комплекса ЛУЭ-300 и направления ядерных исследований |
| description |
The paper describes the problems of upgrading the research complex LINAC-300 and the program of physical studies
expected to be performed at it. The acceleration complex LINAC-300 includes three electron beam ejection channels,
the beam translation system and the spectrometer SP-95. Some special features of already upgraded systems of
the complex LINAC-300 are considered in detail, as well as the plan of activities for its further modernization is
given together with the expected electron beam characteristics. Special attention is paid to the program of physical
investigations that are underway or expected to be performed at the experimental complex.
Робота присвячена питанням реконструкцiї дослiдницького комплексу ЛПЕ-300 та програмi фiзичних дослiджень якi на ньому плануються. У прискорювальному комплексi ЛПЕ-300 є в наявностi три
канала виводу електронного пучка, система паралельного переносу та спектрометр СП-95. В роботi докладно описано особливостi модернiзованих систем комплексу ЛПЕ-300, а також наведено план робiт
що до його подальшої реконструкцiї та характеристики електронного пучка що очiкуються. Окрема
увага надiляється програмi фiзичних дослiджень, якi проводяться та якi планується проводити на експериментальному комплексi.
Работа посвящена вопросам реконструкции исследовательского комплекса ЛУЭ-300 и программе
планируемых на нем физических исследований. В ускорительном комплексе ЛУЭ-300 имеется в наличии три канала вывода электронного пучка, система параллельного переноса и спектрометр СП-95. В
работе подробно описаны особенности модернизированных систем комплекса ЛУЭ-300, а также приведен план работ по его дальнейшей реконструкции и ожидаемые характеристики электронного пучка.
Отдельное внимание уделяется программе физических исследований, проводимых и планируемых на
экспериментальном комплексе.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/96655 |
| citation_txt |
Research complex linac-300 upgrade project and the lines of nuclear research / A.Yu. Buki, A.N. Dovbnya, S.P. Gokov, V.I. Kasilov, S.S. Kochetov, V.A. Kushnir, V.V. Mitrochenko, L.A. Makhnenko, P.L. Makhnenko, T.F. Nikitina, N.G. Shevchenko, O.A. Shopen // Вопросы атомной науки и техники. — 2009. — № 5. — С. 134-140. — Бібліогр.: 2 назв. — англ. |
| work_keys_str_mv |
AT bukiayu researchcomplexlinac300upgradeprojectandthelinesofnuclearresearch AT dovbnyaan researchcomplexlinac300upgradeprojectandthelinesofnuclearresearch AT gokovsp researchcomplexlinac300upgradeprojectandthelinesofnuclearresearch AT kasilovvi researchcomplexlinac300upgradeprojectandthelinesofnuclearresearch AT kochetovss researchcomplexlinac300upgradeprojectandthelinesofnuclearresearch AT kushnirva researchcomplexlinac300upgradeprojectandthelinesofnuclearresearch AT mitrochenkovv researchcomplexlinac300upgradeprojectandthelinesofnuclearresearch AT makhnenkola researchcomplexlinac300upgradeprojectandthelinesofnuclearresearch AT makhnenkopl researchcomplexlinac300upgradeprojectandthelinesofnuclearresearch AT nikitinatf researchcomplexlinac300upgradeprojectandthelinesofnuclearresearch AT shevchenkong researchcomplexlinac300upgradeprojectandthelinesofnuclearresearch AT shopenoa researchcomplexlinac300upgradeprojectandthelinesofnuclearresearch AT bukiayu proektrekonstrukciídoslidnicʹkogokompleksulpe300tanaprâmokâdernihdoslidženʹ AT dovbnyaan proektrekonstrukciídoslidnicʹkogokompleksulpe300tanaprâmokâdernihdoslidženʹ AT gokovsp proektrekonstrukciídoslidnicʹkogokompleksulpe300tanaprâmokâdernihdoslidženʹ AT kasilovvi proektrekonstrukciídoslidnicʹkogokompleksulpe300tanaprâmokâdernihdoslidženʹ AT kochetovss proektrekonstrukciídoslidnicʹkogokompleksulpe300tanaprâmokâdernihdoslidženʹ AT kushnirva proektrekonstrukciídoslidnicʹkogokompleksulpe300tanaprâmokâdernihdoslidženʹ AT mitrochenkovv proektrekonstrukciídoslidnicʹkogokompleksulpe300tanaprâmokâdernihdoslidženʹ AT makhnenkola proektrekonstrukciídoslidnicʹkogokompleksulpe300tanaprâmokâdernihdoslidženʹ AT makhnenkopl proektrekonstrukciídoslidnicʹkogokompleksulpe300tanaprâmokâdernihdoslidženʹ AT nikitinatf proektrekonstrukciídoslidnicʹkogokompleksulpe300tanaprâmokâdernihdoslidženʹ AT shevchenkong proektrekonstrukciídoslidnicʹkogokompleksulpe300tanaprâmokâdernihdoslidženʹ AT shopenoa proektrekonstrukciídoslidnicʹkogokompleksulpe300tanaprâmokâdernihdoslidženʹ AT bukiayu proektrekonstrukciiissledovatelʹskogokompleksalué300inapravleniââdernyhissledovanii AT dovbnyaan proektrekonstrukciiissledovatelʹskogokompleksalué300inapravleniââdernyhissledovanii AT gokovsp proektrekonstrukciiissledovatelʹskogokompleksalué300inapravleniââdernyhissledovanii AT kasilovvi proektrekonstrukciiissledovatelʹskogokompleksalué300inapravleniââdernyhissledovanii AT kochetovss proektrekonstrukciiissledovatelʹskogokompleksalué300inapravleniââdernyhissledovanii AT kushnirva proektrekonstrukciiissledovatelʹskogokompleksalué300inapravleniââdernyhissledovanii AT mitrochenkovv proektrekonstrukciiissledovatelʹskogokompleksalué300inapravleniââdernyhissledovanii AT makhnenkola proektrekonstrukciiissledovatelʹskogokompleksalué300inapravleniââdernyhissledovanii AT makhnenkopl proektrekonstrukciiissledovatelʹskogokompleksalué300inapravleniââdernyhissledovanii AT nikitinatf proektrekonstrukciiissledovatelʹskogokompleksalué300inapravleniââdernyhissledovanii AT shevchenkong proektrekonstrukciiissledovatelʹskogokompleksalué300inapravleniââdernyhissledovanii AT shopenoa proektrekonstrukciiissledovatelʹskogokompleksalué300inapravleniââdernyhissledovanii |
| first_indexed |
2025-11-24T23:32:30Z |
| last_indexed |
2025-11-24T23:32:30Z |
| _version_ |
1850500410738999296 |
| fulltext |
RESEARCH COMPLEX LINAC-300 UPGRADE PROJECT
AND THE LINES OF NUCLEAR RESEARCH
A.Yu. Buki, A.N. Dovbnya, S.P. Gokov, V.I. Kasilov, S.S. Kochetov,
V.A. Kushnir, V.V. Mitrochenko, L.A. Makhnenko, P.L. Makhnenko,
T.F. Nikitina, N.G. Shevchenko, O.A. Shopen
National Science Center ”Kharkov Institute of Physics and Technology”, 61108, Kharkov, Ukraine
(Received July , 2009)
The paper describes the problems of upgrading the research complex LINAC-300 and the program of physical studies
expected to be performed at it. The acceleration complex LINAC-300 includes three electron beam ejection channels,
the beam translation system and the spectrometer SP-95. Some special features of already upgraded systems of
the complex LINAC-300 are considered in detail, as well as the plan of activities for its further modernization is
given together with the expected electron beam characteristics. Special attention is paid to the program of physical
investigations that are underway or expected to be performed at the experimental complex.
PACS:29.20Ej, 29.17.+w
1. INTRODUCTION
At the present time, a quick progress of accelera-
tor technology in the world and the conduction of nu-
merous investigations in the field of basic and applied
nuclear physics, and also, in the field of radiation
technologies, call for a cardinal modernization of a
number of systems at the LINAC-300 complex. This
is necessary for both to improve the characteristics of
the beam formed and to upgrade the existing instru-
mentation of the experimental facilities. The mod-
ernization is necessary for performing experiments in
the areas of nuclear and applied physics, in particu-
lar, for irradiation of various process materials. The
LINAC-300 complex has three electron beam ejec-
tion channels (to eject the beams of energies 30, 60
and 160 to 200 MeV), the beam translation system
for the 160-200 MeV beam ejection channel, and the
spectrometer SP-95.
2. THE 30 MeV BEAM EJECTION
CHANNEL
The main components of the 30 MeV beam ejec-
tion channel are presented in Fig.1. The main
characteristics of the electron beam extracted from
the mentioned channel are presented in Table
1. As it is obvious from Table 1, some char-
acteristics of the ejected electron beam (emit-
tance, energy spectrum width) are inconsistent
with the requirements imposed by current investi-
gations in the field of nuclear and applied physics.
123456
7
8
910111213
14151617
12a
13a
15a
16a
17a
18
18
19
e
e
14a
Conveyor
Fig.1. Layout of the 30 MeV beam ejection chan-
nel: 1 gun; 2 metal-sheathed lens; 3 section ”I”;
4 quadrupole lenses; 5 corrector; 6 automatically
operated valve; 7 collimator; 8 corrector; 9 faraday
cup No 2; 10 section ”1C”; 11 deflecting magnet;
12, 12a quadrupole lenses; 13, 13a correctors; 14
lens; 14a collimator; 15,15a transit-time pickups;
16 faraday cup No 7; 17 faraday cup No 6; 18 18a
video camera; 19 ionization detector
Table 1. The main beam characteristics in the
30 MeV beam ejection channel
Energy, MeV up to 35.0
Pulse length, µs 2
Direct average
output current, µA 100
Deflected beam
average current, µA 85
Energy spectrum
width, % 5...12
Emittance (steady-state
conditions), mm·mrad 1
134 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2009, N5.
Series: Nuclear Physics Investigations (52), p.134-140.
2.1. Research program
The following investigations are planned to be per-
formed at the 30 MeV beam ejection channel:
1) Investigation of near-threshold photofission of
238U (6...6.5 MeV).
2) Investigation of excited states of nuclei by
means of (γ,n) and (γ,p) reactions.
3) Characterization of delayed neutrons from nu-
clear fission reactions.
4) At the direct output of the 30 MeV electron
beam, to complete the test bench with the equip-
ment system and measurement instrumentation for
conducting fundamental and applied investigations
on the physics of particle flux interaction with peri-
odic media, substance, and applied studies necessary
for nuclear engineering and for the development of
radiation technologies.
5) Activation analysis of bulky samples (10...400
kg) for the content of fissile materials and 238U.
6) Investigation of radiation defects in spinel ma-
terials.
2.2. Scheme of work on upgrading the
30 MeV beam ejection channel
In order to realize the above-given program, it is
necessary to fulfil the following range of works at the
30 MeV beam ejection channel:
1. To perform modelling of self-consistent parti-
cle dynamics in the injector part, in the accelerating
section and during the passage through the magnetic
components.
2. To determine the main parameters of the beam
versus the RF power supply parameters.
3. Relying on the calculations made, to choose the
optimum configuration of the accelerator, the type of
the injector-buncher with the required parameters; to
order its manufacture and to install it in the acceler-
ator.
4. To upgrade the HF power supply system (to
energize additionally the injector-buncher); the con-
trol system (to install current and beam position sen-
sors, to provide computer-assisted analysis of infor-
mation on the main characteristics of the beam, to
install automatic control of the main locking devices
of the accelerator, to develop the automatic system
for controlling the energy spread of the electron beam
formed); to improve the existing thermostatting sys-
tem
3. THE 60 MeV BEAM EJECTION
CHANNEL
3.1. The main characteristics of the 60 MeV
beam ejection channel
By the present time, a substantial scope of work has
been done to upgrade the 60 MeV beam ejection
channel. The main components of the 60 MeV beam
ejection channel are schematically presented in Fig.2.
7S 8S
Fig.2. Schematic of the 60 MeV beam ejection
channel
As it is known, the injector of the 60 MeV beam ejec-
tion channel will be operated in two substantially dif-
ferent modes: 1) weak-current (pulsed current ≈ 90
mA), short-pulse (pulse length ≈ 100 ns) conditions
for the storage ring ”Nestor”; 2) moderate-current
(pulsed current ≈ 200 mA), long-pulse (pulse length
≈ 2 µs) conditions for the direct output (200 MeV
beam ejection channel) to the experimental SP-95
facility and the streamer chamber. The main beam
characteristics in the 60 MeV beam ejection chan-
nel (operation for the ”Nestor” storage ring) are pre-
sented in Table 2.
Table 2. The main beam characteristics in the
60 MeV beam ejection channel
Energy, MeV up to 100.0
Pulse length, ns 100
Pulsed current, mA 90
Energy spectrum width
(steady-state conditions), % 0.75
Emittance (steady-state
conditions), mm·mrad 0.07
3.2. Design features of the main 60 MeV
beam ejection channel systems
3.2.1. A compact electron injector
Structurally, the injector (Fig.3) consists of the fol-
lowing units: a diode electron gun, a bunching sys-
tem, a coaxial power input, a waveguide-to-coaxial
adapter, a short solenoid, a current sensor and an
axially symmetric magnetic lens.In the gun, a spher-
ical impregnated oxide cathode, 5 mm in diameter,
is used [1]. The buncher is made from oxygen-free
copper by the ”disk-ring” technology, i.e., each cav-
ity consists of a cylindrical ring and two disks with
holes made in them to let the beam pass. The inter-
nal surfaces of cavities are diamond tooled. The rings
and the disks are connected between themselves by
hard brazing in a vacuum furnace.
135
Fig.3. Ready-assembled injector: 1 - electron gun
cathode unit; 2 - buncher; 3 - solenoid; 4 - RF in-
put waveguide; 5 - beam current sensor; 6 - magnetic
lens; 7 - short-circuit piston motion mechanism
At the periphery of cavities 16 channels are made
for the coolant passage. The first cavity comprises a
calibrated induction probe to control the field ampli-
tude. Owing to a rather high field intensity on the
axis of the fifth cavity the beam particles get a trans-
verse impulse, which leads to a beam center shift.
Because of the energy straggling of particles, the
beam position correction by magnetic components
causes deterioration of the transverse emittance. One
of the methods to eliminate this phenomenon is to
use a coaxial input of the microwave power into
the system. The scheme and the main character-
istics of the electron source are presented in Fig.4.
Fig.4. Source of an electron
Figure 5 shows the scheme and the main character-
istics of the buncher-collimator. It can be seen from
Fig.5 that in the resonance system of the buncher
the field on the axis exponentially increases from the
point of electron injection till the point of electron
escape from the system due to a special choice of
cavity dimensions.
3.2.2. Electron source modulator
Figure 6 is a basic diagram showing the princi-
ple of operation of the electron source modulator.
≈ 220 mAi
out
2 mm·mradε
7.7°∆ϕ
≈ 1MeVW
out
240mAi
in
25 keVW
in
≈ 220 mAi
out
2 mm·mradε
7.7°∆ϕ
≈ 1MeVW
out
240mAi
in
25 keVW
in
Fig.5. Buncher, collimator. Electron energy -
25 keV ; Beam current - 240 mA; Beam radius in
the crossover - 2.2 mm; Distance to the crossover -
23 mm; Normalized emittance ε ≈ 3.2π ·mm ·mrad
1
2
3
4
5 6
Fig.6. The Modulator of Electron Source: 1-high-
voltage unit; 2-demagnetization unit; 3-heating cur-
rent control; 4-generator unit; 5-charging inductance
unit; 6-capacitor
As it can be seen from the diagram, the electron
source modulator consists of the following main units:
1. high-voltage unit;
2. demagnetization unit;
3. heating current control;
4. generator unit;
5. charging inductance unit;
6. capacitor.
An essential difference of the given diagram from a
standard circuit consists in the use of the partial dis-
charge capacitor. Here, the role of thermionic relay
belongs to a control transistor. The discharge capac-
itor from the high-voltage unit is charged via Lcharge
up to 2 kV. During voltage pulse generation at the
source, a control signal of necessary time duration is
fed from the generator unit via a driver to open the
transistor and to realize the discharge of the pulse-
forming capacity. At the necessary moment, the con-
trol signal stops, the capacity ends discharging and
the pulse formation ceases. The advantage of this cir-
cuit is the absence of the thermionic relay, which is
uncontrolled and leads to the forming line depletion.
The present circuit can provide voltage pulses of any
duration for the source.
136
3.2.3. Accelerating sections
Figure 7 shows the main frequency and tem-
perature characteristics of the sections employed
at the 60 MeV electron beam ejection channel.
F
a
c
to
r
o
f
a
s
ta
n
d
in
g
w
a
v
e
F
a
c
to
r
o
f
a
s
ta
n
d
in
g
w
a
v
e
f(MHz)
f(
M
H
z
)
f(
M
H
z
)
f(MHz)
Fig.7. The Accelerated sections
3.2.4. The control system
Fig.8. Functional diagram of the control system
of the 60 MeV beam ejection channel. 1 - control
center post in the linac control room, synchronizer,
PC, zone lock unit (ZA),4-channel ADC with a
multiplexer; 2 - post of magnet component power
sources (PS); 3, 4 - modulator and klystron universal
locking system; 5 - thermostatting system electronics
bay
The control system [2] has the following main func-
tions:
- automated (on operator’s command) control of
accelerator switching-on and off, and also control of
the accelerator system parameters;
- measurement of electron beam parameters;
- beam hazard protection of the personnel (zone
locks);
- indication of system parameters and the electron
beam.
The main subsystems are:
- synchronizing system;
- beam parameter control system;
- magnet power system;
- thermostatting system;
- zone lock system;
- remote control system (RF, klystron pulse am-
plifier)
- blocking and signaling system of modulators and
klystron pulse amplifiers.
The functional diagram of the control system of
the 60 MeV beam ejection channel is presented in
Fig.8. It can be seen from the diagram that the main
systems of the accelerator are controlled by means of
a personal computer (Linac operator’s PC) and pro-
grammable controllers ADAM. The system also com-
prises computer-controlled power sources Marathon
CAN-100. The information about the basis parame-
ters of the beam is displayed on the PC screen.
3.2.5. Magnetic-component power system
The magnetic-component DC power sources [2]
(henceforth PS) have been developed in two mod-
ifications: ”Marathon CAN-100/1” (voltage from -
100V to +100V, current up to 1A) and ”Marathon
CAN-30/4” (voltage from -30 to +30V, current
up to 4 A). Structurally, the PS were manufac-
tured in two variants: 1) two-channel in a stan-
dard 19” case, 3U in height, and 2) single-channel
in a metal case. CAN 2.0A and 2.0V, RS232 are
the interfaces for the PS control. The PS are in-
tended for constructing the CAN-interface network-
controlled system of distributed electric power sup-
ply. They are depicted in Fig.9. Figure 10
shows the diagrammatic layout of thermocouple el-
ements on the 60 MeV beam ejection channel.
Fig.9. Magnetic-component power system
3.2.6. The thermostatting system
GR
Control system
DAM -5510
Linac
Operator PC
ADAM-5018 ADAM-5018
Thermocouples " 1 - " 11
" 1 " 2 " 3
SISTEM UBS
Heaters
" 9, " 10, " 11
Section 7 Section 8
Heat exchangers
" 6," 7," 8
Oth
dev
" 4, " 5
Fig.10. Scheme of temperature sensors (thermo-
couples) arrangement on the accelerator LU-60M
equipment
137
The figure shows the thermocouple installation
sites, and also the scheme of thermostatting sys-
tem control by means of the programmable con-
trollers ADAM. Figure 11 illustrates the temperature
conditions of the thermostatting system operation.
Fig.11. Temperature conditions of the thermostat-
ting system operation (without recirculated water)
It can be seen from Fig. 11 that the thermostatting
system is brought into operation within 20 minutes
and it maintains the temperature stability of indi-
vidual units at a 1% level. Figure 12 shows the
photometering data for the trace on the glass from
the beam that has passed without magnetic elements.
Fig.12. Photometering data for the trace on the
glass
It is obvious from the figure that the picture width
at half-blackout is no more than 10 mm. We have
presented above some design features of the main
systems of the 60 MeV beam ejection channel. Dur-
ing arrangement of the given systems some defects
were revealed, which are now being eliminated. Be-
sides, considering that the mentioned channel will be
operated in two regimes (short- and long-pulse con-
ditions), the injector-buncher as well as the electron
source modulators and accelerating sections must be
substantially improved. This is connected with the
fact that for the operation of the accelerator with
the ”Nestor” facility it is the pulse front width is the
basic characteristic, because it determines the tran-
sient period of a short pulse. For the operation of
the accelerator with the experimental facility SP-95
(spectrometer) and the streamer chamber it is the
stability of the flat top of the voltage pulse that is of
most importance.
4. THE 160...200 MeV BEAM EJECTION
CHANNEL
4.1. The main components of the
160...200 MeV beam ejection channel
It should be noted that nowadays in the world there
are no electron accelerators of energies between 100
and 200 MeV, whereas in this energy range there
are a wide variety of problems, which are currently
central for nuclear physics. Therefore, it appears
of importance for us to work at forming an elec-
tron beam of energy up to 200 MeV and an average
current of no less than 1 µA , directed to the di-
rect output, the experimental facility SP-95 and the
streamer chamber. In this connection, two additional
sections must be installed for the 60 MeV beam
ejection channel; its general layout together with
the beam translation system is presented in Fig.13.
7S 8S 9S 10S
Fig.13. Layout of the 60 MeV beam ejection
channel
The phase and energy characteristics of the beam
formed in this case are given in Fig. 14. It can
be seen from the last figure that here the energy
spread of the beam also should not exceed 1 %.
Kharkov-65Kharkov-85 LU-60 Kharkov-65 Kharkov-65Kharkov-85 LU-60 Kharkov-65
16 W 16 W16 W 16 W
Fig.14. Phase and energy characteristics of the
beam formed at 60 and 160...200 MeV ejection
channels
The expected beam characteristics at the
160...200 MeV ejection channel are given in Table 3.
138
Table 3. The expected beam characteristics at
the 160...200 MeV ejection channel
Energy, MeV Up to 200.0
Pulse length, ns 1500
Pulsed current, mA 200
Energy spectrum width
(steady-state conditions), % 1
Emittance (steady-state
conditions), mm·mrad 0.1
4.2. Work plan for upgrading the
160...200 MeV beam ejection channel
The upgrading of the 160...200 MeV beam ejection
channel calls for the following works to be done:
1. to perform repairs and all-round setting-up of
modulator equipment for sections 9 and 10;
2. to install accelerating sections 9 and 10, to
make their vertical and horizontal alignments with
respect to accelerating sections 7 and 8, and also to
align the beam translation system.
3. to arrange the vacuum system of sections 9 and
10;
4. to arrange the RF power supply of sections 9
and 10;
5. to arrange the thermostatting system of sec-
tions 9 and 10;
6. to upgrade the control system of the 60 MeV
beam ejection system of the with due regard for the
necessity of controlling the operation of sections 9 and
10;
7. to restore the radiation shielding.
4.3. Basic research at the direct output of
the 160...200 MeV beam ejection channel
1. Characterization of the radiation of axially
channeled particles in the crystal at energies between
100 and 160 MeV and elucidation of the conditions,
at which this mechanism of radiation is determinant
as the beam passes through the crystal.
2. Investigation of the process of coherent radia-
tion under conditions of real particle dynamics in the
crystal.
3. Studies into coherent radiation characteristics
at the conditions of dynamic chaos occurrence during
particle motion in the periodic field of crystal atomic
chains.
4. Feasibility analysis of producing monochro-
matic and polarized radiation in the energy range
Eγ∼100...160 MeV.
5. Studies on the processes of interaction between
the particle fluxes of energies up to 160 MeV and var-
ious materials.
5. THE BEAM TRANSLATION SYSTEM
5.1. The main components of the beam
translation system and the spectrometer
SP-95
Below we specify the main components of both the
beam translation system and the experimental setup
SP-95. As of today, the units that require great ef-
forts for their upgrading are marked by italicizing,
and the units that must be replaced are shown by
underlining.
The main components of the beam translation
system
1. Bending magnets BM-1 and BM-2 with a field
stabilization system;
2. electron line with a vacuum valve;
3. high-vacuum pump;
4. hole/slit collimators;
5. monochromators.
The main components of the experimental setup
SP-95
I. Electron line from the bending magnet BM-2
to the spectrometer SP-95:
1. the electron line itself with a vacuum valve;
2. vacuum facilities including fore pumps (3), a
high-vacuum pump (1) and vacuum-measuring de-
vices;
3. beam steering system consisting of a corrector
and two quadrupole lenses;
4. beam energy compression system;
5. secondary-emission monitor (SEM);
6. Faraday cup (FC);
7. current integrator of the SEM and FC.
II. Spectrometer SP-95:
1. scattering chamber;
2. target facilities; a) for solid-state targets +four-
and twelve-cell devices; b) for gas targets - GT-1 and
GT-2;
3. spectrometer’s magnet with its proper vacuum
chamber and cooling system;
4. magnetic field stabilization and measurement
system;
5. magnet swing frame;
6. radiation shielding of the electron counter;
7. TV cameras for monitoring the beam position
on the target and the bending angle of the magnet.
III. Multichannel electron counter:
1. electron counter head;
2. high-stability photomultiplier (PM) power sup-
plies of voltage up to 3 kV;
3. electron lines of pulses from the electron detec-
tor PM, including coincidence circuits.
IV. Computer for control and analysis of measure-
ment data.
V. Facility control panel.
VI. Beam translation system and SP-95 control
cabinets.
VII. Cabling system: power, signal and control
cables.
139
5.2. The basic research program for SP-95
1. Investigation of giant resonances in light
nuclei as well as transverse and longitudinal re-
sponse functions of nuclei at momentum transfers
q=0.5...1.1 fm−1.
2. Investigation of isovector and isoscalar giant
resonances.
3. Experimentation to determine the contribution
of meson exchange currents to the zero moment of the
longitudinal response function.
4. Studies on the extrapolation of response func-
tions to the region of high-energy transfers (as indi-
cated in the literature, this is the problem, the ab-
sence of the solution to which makes impossible the
experimental verification of the majority of sum rules
calculations).
5. Obtaining of data necessary for determining
the exchange part of the Coulomb energy of atomic
nuclei.
6. CONCLUSION
Thus, here we have outlined technical peculiarities
of a number of main systems of the research accelerat-
ing complex LUE-300. Work plans have been devel-
oped for upgrading the beam ejection channels, the
beam translation system and the spectrometer SP-95.
The projected lines of research on radiation technolo-
gies, basic and applied nuclear physics appear topical
for the nearest decade and the years ahead.
References
1. N.I. Ayzatskiy, P.G. Gurtovenko, V.F. Zhiglo,
E.Yu. Kramarenko, V.M. Kodyakov, V.A. Kush-
nir, V.V. Mytrochenko and oth. Compact elec-
tron injector for s-band linac // Problems of
Atomic Science and Technology. Series ”Nuclear
Physics Investigations. 2008, v.3, p.68-72.
2. Yu.I. Akchurin, V.N. Boriskin*, V.A. Mo-
mot, A.V. Ivahnenko, M.V. Ivahnenko, S.F.
Nescheret, S.K. Romanovsky, A.N. Savchenko,
A.A. Sarvilov, S.V. Shelepko, V.I. Tatanov, G.N.
Tsebenko, L.V. Yeran. Control system of storage
ring nestor LINAC// Problems of Atomic Science
and Technology. Series ”Nuclear Physics Investi-
gations. 2008, v.3, p.196-199.
ПРОЕКТ РЕКОНСТРУКЦИИ ИССЛЕДОВАТЕЛЬСКОГО КОМПЛЕКСА ЛУЭ-300
И НАПРАВЛЕНИЯ ЯДЕРНЫХ ИССЛЕДОВАНИЙ
А.Ю. Буки, А.Н. Довбня, С.П. Гоков, В.И. Касилов, С.С. Кочетов, В.А. Кушнир,
В.В. Митроченко, Л.А. Махненко, П.Л. Махненко, Т.Ф. Никитина, Н.Г. Шевченко,
О.А. Шопен
Работа посвящена вопросам реконструкции исследовательского комплекса ЛУЭ-300 и программе
планируемых на нем физических исследований. В ускорительном комплексе ЛУЭ-300 имеется в нали-
чии три канала вывода электронного пучка, система параллельного переноса и спектрометр СП-95. В
работе подробно описаны особенности модернизированных систем комплекса ЛУЭ-300, а также приве-
ден план работ по его дальнейшей реконструкции и ожидаемые характеристики электронного пучка.
Отдельное внимание уделяется программе физических исследований, проводимых и планируемых на
экспериментальном комплексе.
ПРОЕКТ РЕКОНСТРУКЦIЇ ДОСЛIДНИЦЬКОГО КОМПЛЕКСУ ЛПЕ-300
ТА НАПРЯМОК ЯДЕРНИХ ДОСЛIДЖЕНЬ
О.Ю. Букi, А.М. Довбня, С.П. Гоков, В.Й. Касiлов, С.С. Кочетов, В.А. Кушнiр,
В.В. Мiтроченко, Л.О. Махненко, П.Л. Махненко, Т.Ф. Нiкiтiна, М.Г. Шевченко,
О.О. Шопен
Робота присвячена питанням реконструкцiї дослiдницького комплексу ЛПЕ-300 та програмi фiзич-
них дослiджень якi на ньому плануються. У прискорювальному комплексi ЛПЕ-300 є в наявностi три
канала виводу електронного пучка, система паралельного переносу та спектрометр СП-95. В роботi до-
кладно описано особливостi модернiзованих систем комплексу ЛПЕ-300, а також наведено план робiт
що до його подальшої реконструкцiї та характеристики електронного пучка що очiкуються. Окрема
увага надiляється програмi фiзичних дослiджень, якi проводяться та якi планується проводити на екс-
периментальному комплексi.
140
|