Research complex linac-300 upgrade project and the lines of nuclear research

The paper describes the problems of upgrading the research complex LINAC-300 and the program of physical studies expected to be performed at it. The acceleration complex LINAC-300 includes three electron beam ejection channels, the beam translation system and the spectrometer SP-95. Some special f...

Full description

Saved in:
Bibliographic Details
Published in:Вопросы атомной науки и техники
Date:2009
Main Authors: Buki, A.Yu., Dovbnya, A.N., Gokov, S.P., Kasilov, V.I., Kochetov, S.S., Kushnir, V.A., Mitrochenko, V.V., Makhnenko, L.A., Makhnenko, P.L., Nikitina, T.F., Shevchenko, N.G., Shopen, O.A.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2009
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/96655
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Research complex linac-300 upgrade project and the lines of nuclear research / A.Yu. Buki, A.N. Dovbnya, S.P. Gokov, V.I. Kasilov, S.S. Kochetov, V.A. Kushnir, V.V. Mitrochenko, L.A. Makhnenko, P.L. Makhnenko, T.F. Nikitina, N.G. Shevchenko, O.A. Shopen // Вопросы атомной науки и техники. — 2009. — № 5. — С. 134-140. — Бібліогр.: 2 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-96655
record_format dspace
spelling Buki, A.Yu.
Dovbnya, A.N.
Gokov, S.P.
Kasilov, V.I.
Kochetov, S.S.
Kushnir, V.A.
Mitrochenko, V.V.
Makhnenko, L.A.
Makhnenko, P.L.
Nikitina, T.F.
Shevchenko, N.G.
Shopen, O.A.
2016-03-18T21:24:05Z
2016-03-18T21:24:05Z
2009
Research complex linac-300 upgrade project and the lines of nuclear research / A.Yu. Buki, A.N. Dovbnya, S.P. Gokov, V.I. Kasilov, S.S. Kochetov, V.A. Kushnir, V.V. Mitrochenko, L.A. Makhnenko, P.L. Makhnenko, T.F. Nikitina, N.G. Shevchenko, O.A. Shopen // Вопросы атомной науки и техники. — 2009. — № 5. — С. 134-140. — Бібліогр.: 2 назв. — англ.
1562-6016
PACS:29.20Ej, 29.17.+w
https://nasplib.isofts.kiev.ua/handle/123456789/96655
The paper describes the problems of upgrading the research complex LINAC-300 and the program of physical studies expected to be performed at it. The acceleration complex LINAC-300 includes three electron beam ejection channels, the beam translation system and the spectrometer SP-95. Some special features of already upgraded systems of the complex LINAC-300 are considered in detail, as well as the plan of activities for its further modernization is given together with the expected electron beam characteristics. Special attention is paid to the program of physical investigations that are underway or expected to be performed at the experimental complex.
Робота присвячена питанням реконструкцiї дослiдницького комплексу ЛПЕ-300 та програмi фiзичних дослiджень якi на ньому плануються. У прискорювальному комплексi ЛПЕ-300 є в наявностi три канала виводу електронного пучка, система паралельного переносу та спектрометр СП-95. В роботi докладно описано особливостi модернiзованих систем комплексу ЛПЕ-300, а також наведено план робiт що до його подальшої реконструкцiї та характеристики електронного пучка що очiкуються. Окрема увага надiляється програмi фiзичних дослiджень, якi проводяться та якi планується проводити на експериментальному комплексi.
Работа посвящена вопросам реконструкции исследовательского комплекса ЛУЭ-300 и программе планируемых на нем физических исследований. В ускорительном комплексе ЛУЭ-300 имеется в наличии три канала вывода электронного пучка, система параллельного переноса и спектрометр СП-95. В работе подробно описаны особенности модернизированных систем комплекса ЛУЭ-300, а также приведен план работ по его дальнейшей реконструкции и ожидаемые характеристики электронного пучка. Отдельное внимание уделяется программе физических исследований, проводимых и планируемых на экспериментальном комплексе.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Теория и техника ускорения частиц
Research complex linac-300 upgrade project and the lines of nuclear research
Проект реконструкцiї дослiдницького комплексу ЛПЕ-300 та напрямок ядерних дослiджень
Проект реконструкции исследовательского комплекса ЛУЭ-300 и направления ядерных исследований
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Research complex linac-300 upgrade project and the lines of nuclear research
spellingShingle Research complex linac-300 upgrade project and the lines of nuclear research
Buki, A.Yu.
Dovbnya, A.N.
Gokov, S.P.
Kasilov, V.I.
Kochetov, S.S.
Kushnir, V.A.
Mitrochenko, V.V.
Makhnenko, L.A.
Makhnenko, P.L.
Nikitina, T.F.
Shevchenko, N.G.
Shopen, O.A.
Теория и техника ускорения частиц
title_short Research complex linac-300 upgrade project and the lines of nuclear research
title_full Research complex linac-300 upgrade project and the lines of nuclear research
title_fullStr Research complex linac-300 upgrade project and the lines of nuclear research
title_full_unstemmed Research complex linac-300 upgrade project and the lines of nuclear research
title_sort research complex linac-300 upgrade project and the lines of nuclear research
author Buki, A.Yu.
Dovbnya, A.N.
Gokov, S.P.
Kasilov, V.I.
Kochetov, S.S.
Kushnir, V.A.
Mitrochenko, V.V.
Makhnenko, L.A.
Makhnenko, P.L.
Nikitina, T.F.
Shevchenko, N.G.
Shopen, O.A.
author_facet Buki, A.Yu.
Dovbnya, A.N.
Gokov, S.P.
Kasilov, V.I.
Kochetov, S.S.
Kushnir, V.A.
Mitrochenko, V.V.
Makhnenko, L.A.
Makhnenko, P.L.
Nikitina, T.F.
Shevchenko, N.G.
Shopen, O.A.
topic Теория и техника ускорения частиц
topic_facet Теория и техника ускорения частиц
publishDate 2009
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Проект реконструкцiї дослiдницького комплексу ЛПЕ-300 та напрямок ядерних дослiджень
Проект реконструкции исследовательского комплекса ЛУЭ-300 и направления ядерных исследований
description The paper describes the problems of upgrading the research complex LINAC-300 and the program of physical studies expected to be performed at it. The acceleration complex LINAC-300 includes three electron beam ejection channels, the beam translation system and the spectrometer SP-95. Some special features of already upgraded systems of the complex LINAC-300 are considered in detail, as well as the plan of activities for its further modernization is given together with the expected electron beam characteristics. Special attention is paid to the program of physical investigations that are underway or expected to be performed at the experimental complex. Робота присвячена питанням реконструкцiї дослiдницького комплексу ЛПЕ-300 та програмi фiзичних дослiджень якi на ньому плануються. У прискорювальному комплексi ЛПЕ-300 є в наявностi три канала виводу електронного пучка, система паралельного переносу та спектрометр СП-95. В роботi докладно описано особливостi модернiзованих систем комплексу ЛПЕ-300, а також наведено план робiт що до його подальшої реконструкцiї та характеристики електронного пучка що очiкуються. Окрема увага надiляється програмi фiзичних дослiджень, якi проводяться та якi планується проводити на експериментальному комплексi. Работа посвящена вопросам реконструкции исследовательского комплекса ЛУЭ-300 и программе планируемых на нем физических исследований. В ускорительном комплексе ЛУЭ-300 имеется в наличии три канала вывода электронного пучка, система параллельного переноса и спектрометр СП-95. В работе подробно описаны особенности модернизированных систем комплекса ЛУЭ-300, а также приведен план работ по его дальнейшей реконструкции и ожидаемые характеристики электронного пучка. Отдельное внимание уделяется программе физических исследований, проводимых и планируемых на экспериментальном комплексе.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/96655
citation_txt Research complex linac-300 upgrade project and the lines of nuclear research / A.Yu. Buki, A.N. Dovbnya, S.P. Gokov, V.I. Kasilov, S.S. Kochetov, V.A. Kushnir, V.V. Mitrochenko, L.A. Makhnenko, P.L. Makhnenko, T.F. Nikitina, N.G. Shevchenko, O.A. Shopen // Вопросы атомной науки и техники. — 2009. — № 5. — С. 134-140. — Бібліогр.: 2 назв. — англ.
work_keys_str_mv AT bukiayu researchcomplexlinac300upgradeprojectandthelinesofnuclearresearch
AT dovbnyaan researchcomplexlinac300upgradeprojectandthelinesofnuclearresearch
AT gokovsp researchcomplexlinac300upgradeprojectandthelinesofnuclearresearch
AT kasilovvi researchcomplexlinac300upgradeprojectandthelinesofnuclearresearch
AT kochetovss researchcomplexlinac300upgradeprojectandthelinesofnuclearresearch
AT kushnirva researchcomplexlinac300upgradeprojectandthelinesofnuclearresearch
AT mitrochenkovv researchcomplexlinac300upgradeprojectandthelinesofnuclearresearch
AT makhnenkola researchcomplexlinac300upgradeprojectandthelinesofnuclearresearch
AT makhnenkopl researchcomplexlinac300upgradeprojectandthelinesofnuclearresearch
AT nikitinatf researchcomplexlinac300upgradeprojectandthelinesofnuclearresearch
AT shevchenkong researchcomplexlinac300upgradeprojectandthelinesofnuclearresearch
AT shopenoa researchcomplexlinac300upgradeprojectandthelinesofnuclearresearch
AT bukiayu proektrekonstrukciídoslidnicʹkogokompleksulpe300tanaprâmokâdernihdoslidženʹ
AT dovbnyaan proektrekonstrukciídoslidnicʹkogokompleksulpe300tanaprâmokâdernihdoslidženʹ
AT gokovsp proektrekonstrukciídoslidnicʹkogokompleksulpe300tanaprâmokâdernihdoslidženʹ
AT kasilovvi proektrekonstrukciídoslidnicʹkogokompleksulpe300tanaprâmokâdernihdoslidženʹ
AT kochetovss proektrekonstrukciídoslidnicʹkogokompleksulpe300tanaprâmokâdernihdoslidženʹ
AT kushnirva proektrekonstrukciídoslidnicʹkogokompleksulpe300tanaprâmokâdernihdoslidženʹ
AT mitrochenkovv proektrekonstrukciídoslidnicʹkogokompleksulpe300tanaprâmokâdernihdoslidženʹ
AT makhnenkola proektrekonstrukciídoslidnicʹkogokompleksulpe300tanaprâmokâdernihdoslidženʹ
AT makhnenkopl proektrekonstrukciídoslidnicʹkogokompleksulpe300tanaprâmokâdernihdoslidženʹ
AT nikitinatf proektrekonstrukciídoslidnicʹkogokompleksulpe300tanaprâmokâdernihdoslidženʹ
AT shevchenkong proektrekonstrukciídoslidnicʹkogokompleksulpe300tanaprâmokâdernihdoslidženʹ
AT shopenoa proektrekonstrukciídoslidnicʹkogokompleksulpe300tanaprâmokâdernihdoslidženʹ
AT bukiayu proektrekonstrukciiissledovatelʹskogokompleksalué300inapravleniââdernyhissledovanii
AT dovbnyaan proektrekonstrukciiissledovatelʹskogokompleksalué300inapravleniââdernyhissledovanii
AT gokovsp proektrekonstrukciiissledovatelʹskogokompleksalué300inapravleniââdernyhissledovanii
AT kasilovvi proektrekonstrukciiissledovatelʹskogokompleksalué300inapravleniââdernyhissledovanii
AT kochetovss proektrekonstrukciiissledovatelʹskogokompleksalué300inapravleniââdernyhissledovanii
AT kushnirva proektrekonstrukciiissledovatelʹskogokompleksalué300inapravleniââdernyhissledovanii
AT mitrochenkovv proektrekonstrukciiissledovatelʹskogokompleksalué300inapravleniââdernyhissledovanii
AT makhnenkola proektrekonstrukciiissledovatelʹskogokompleksalué300inapravleniââdernyhissledovanii
AT makhnenkopl proektrekonstrukciiissledovatelʹskogokompleksalué300inapravleniââdernyhissledovanii
AT nikitinatf proektrekonstrukciiissledovatelʹskogokompleksalué300inapravleniââdernyhissledovanii
AT shevchenkong proektrekonstrukciiissledovatelʹskogokompleksalué300inapravleniââdernyhissledovanii
AT shopenoa proektrekonstrukciiissledovatelʹskogokompleksalué300inapravleniââdernyhissledovanii
first_indexed 2025-11-24T23:32:30Z
last_indexed 2025-11-24T23:32:30Z
_version_ 1850500410738999296
fulltext RESEARCH COMPLEX LINAC-300 UPGRADE PROJECT AND THE LINES OF NUCLEAR RESEARCH A.Yu. Buki, A.N. Dovbnya, S.P. Gokov, V.I. Kasilov, S.S. Kochetov, V.A. Kushnir, V.V. Mitrochenko, L.A. Makhnenko, P.L. Makhnenko, T.F. Nikitina, N.G. Shevchenko, O.A. Shopen National Science Center ”Kharkov Institute of Physics and Technology”, 61108, Kharkov, Ukraine (Received July , 2009) The paper describes the problems of upgrading the research complex LINAC-300 and the program of physical studies expected to be performed at it. The acceleration complex LINAC-300 includes three electron beam ejection channels, the beam translation system and the spectrometer SP-95. Some special features of already upgraded systems of the complex LINAC-300 are considered in detail, as well as the plan of activities for its further modernization is given together with the expected electron beam characteristics. Special attention is paid to the program of physical investigations that are underway or expected to be performed at the experimental complex. PACS:29.20Ej, 29.17.+w 1. INTRODUCTION At the present time, a quick progress of accelera- tor technology in the world and the conduction of nu- merous investigations in the field of basic and applied nuclear physics, and also, in the field of radiation technologies, call for a cardinal modernization of a number of systems at the LINAC-300 complex. This is necessary for both to improve the characteristics of the beam formed and to upgrade the existing instru- mentation of the experimental facilities. The mod- ernization is necessary for performing experiments in the areas of nuclear and applied physics, in particu- lar, for irradiation of various process materials. The LINAC-300 complex has three electron beam ejec- tion channels (to eject the beams of energies 30, 60 and 160 to 200 MeV), the beam translation system for the 160-200 MeV beam ejection channel, and the spectrometer SP-95. 2. THE 30 MeV BEAM EJECTION CHANNEL The main components of the 30 MeV beam ejec- tion channel are presented in Fig.1. The main characteristics of the electron beam extracted from the mentioned channel are presented in Table 1. As it is obvious from Table 1, some char- acteristics of the ejected electron beam (emit- tance, energy spectrum width) are inconsistent with the requirements imposed by current investi- gations in the field of nuclear and applied physics. 123456 7 8 910111213 14151617 12a 13a 15a 16a 17a 18 18 19 e e 14a Conveyor Fig.1. Layout of the 30 MeV beam ejection chan- nel: 1 gun; 2 metal-sheathed lens; 3 section ”I”; 4 quadrupole lenses; 5 corrector; 6 automatically operated valve; 7 collimator; 8 corrector; 9 faraday cup No 2; 10 section ”1C”; 11 deflecting magnet; 12, 12a quadrupole lenses; 13, 13a correctors; 14 lens; 14a collimator; 15,15a transit-time pickups; 16 faraday cup No 7; 17 faraday cup No 6; 18 18a video camera; 19 ionization detector Table 1. The main beam characteristics in the 30 MeV beam ejection channel Energy, MeV up to 35.0 Pulse length, µs 2 Direct average output current, µA 100 Deflected beam average current, µA 85 Energy spectrum width, % 5...12 Emittance (steady-state conditions), mm·mrad 1 134 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2009, N5. Series: Nuclear Physics Investigations (52), p.134-140. 2.1. Research program The following investigations are planned to be per- formed at the 30 MeV beam ejection channel: 1) Investigation of near-threshold photofission of 238U (6...6.5 MeV). 2) Investigation of excited states of nuclei by means of (γ,n) and (γ,p) reactions. 3) Characterization of delayed neutrons from nu- clear fission reactions. 4) At the direct output of the 30 MeV electron beam, to complete the test bench with the equip- ment system and measurement instrumentation for conducting fundamental and applied investigations on the physics of particle flux interaction with peri- odic media, substance, and applied studies necessary for nuclear engineering and for the development of radiation technologies. 5) Activation analysis of bulky samples (10...400 kg) for the content of fissile materials and 238U. 6) Investigation of radiation defects in spinel ma- terials. 2.2. Scheme of work on upgrading the 30 MeV beam ejection channel In order to realize the above-given program, it is necessary to fulfil the following range of works at the 30 MeV beam ejection channel: 1. To perform modelling of self-consistent parti- cle dynamics in the injector part, in the accelerating section and during the passage through the magnetic components. 2. To determine the main parameters of the beam versus the RF power supply parameters. 3. Relying on the calculations made, to choose the optimum configuration of the accelerator, the type of the injector-buncher with the required parameters; to order its manufacture and to install it in the acceler- ator. 4. To upgrade the HF power supply system (to energize additionally the injector-buncher); the con- trol system (to install current and beam position sen- sors, to provide computer-assisted analysis of infor- mation on the main characteristics of the beam, to install automatic control of the main locking devices of the accelerator, to develop the automatic system for controlling the energy spread of the electron beam formed); to improve the existing thermostatting sys- tem 3. THE 60 MeV BEAM EJECTION CHANNEL 3.1. The main characteristics of the 60 MeV beam ejection channel By the present time, a substantial scope of work has been done to upgrade the 60 MeV beam ejection channel. The main components of the 60 MeV beam ejection channel are schematically presented in Fig.2. 7S 8S Fig.2. Schematic of the 60 MeV beam ejection channel As it is known, the injector of the 60 MeV beam ejec- tion channel will be operated in two substantially dif- ferent modes: 1) weak-current (pulsed current ≈ 90 mA), short-pulse (pulse length ≈ 100 ns) conditions for the storage ring ”Nestor”; 2) moderate-current (pulsed current ≈ 200 mA), long-pulse (pulse length ≈ 2 µs) conditions for the direct output (200 MeV beam ejection channel) to the experimental SP-95 facility and the streamer chamber. The main beam characteristics in the 60 MeV beam ejection chan- nel (operation for the ”Nestor” storage ring) are pre- sented in Table 2. Table 2. The main beam characteristics in the 60 MeV beam ejection channel Energy, MeV up to 100.0 Pulse length, ns 100 Pulsed current, mA 90 Energy spectrum width (steady-state conditions), % 0.75 Emittance (steady-state conditions), mm·mrad 0.07 3.2. Design features of the main 60 MeV beam ejection channel systems 3.2.1. A compact electron injector Structurally, the injector (Fig.3) consists of the fol- lowing units: a diode electron gun, a bunching sys- tem, a coaxial power input, a waveguide-to-coaxial adapter, a short solenoid, a current sensor and an axially symmetric magnetic lens.In the gun, a spher- ical impregnated oxide cathode, 5 mm in diameter, is used [1]. The buncher is made from oxygen-free copper by the ”disk-ring” technology, i.e., each cav- ity consists of a cylindrical ring and two disks with holes made in them to let the beam pass. The inter- nal surfaces of cavities are diamond tooled. The rings and the disks are connected between themselves by hard brazing in a vacuum furnace. 135 Fig.3. Ready-assembled injector: 1 - electron gun cathode unit; 2 - buncher; 3 - solenoid; 4 - RF in- put waveguide; 5 - beam current sensor; 6 - magnetic lens; 7 - short-circuit piston motion mechanism At the periphery of cavities 16 channels are made for the coolant passage. The first cavity comprises a calibrated induction probe to control the field ampli- tude. Owing to a rather high field intensity on the axis of the fifth cavity the beam particles get a trans- verse impulse, which leads to a beam center shift. Because of the energy straggling of particles, the beam position correction by magnetic components causes deterioration of the transverse emittance. One of the methods to eliminate this phenomenon is to use a coaxial input of the microwave power into the system. The scheme and the main character- istics of the electron source are presented in Fig.4. Fig.4. Source of an electron Figure 5 shows the scheme and the main character- istics of the buncher-collimator. It can be seen from Fig.5 that in the resonance system of the buncher the field on the axis exponentially increases from the point of electron injection till the point of electron escape from the system due to a special choice of cavity dimensions. 3.2.2. Electron source modulator Figure 6 is a basic diagram showing the princi- ple of operation of the electron source modulator. ≈ 220 mAi out 2 mm·mradε 7.7°∆ϕ ≈ 1MeVW out 240mAi in 25 keVW in ≈ 220 mAi out 2 mm·mradε 7.7°∆ϕ ≈ 1MeVW out 240mAi in 25 keVW in Fig.5. Buncher, collimator. Electron energy - 25 keV ; Beam current - 240 mA; Beam radius in the crossover - 2.2 mm; Distance to the crossover - 23 mm; Normalized emittance ε ≈ 3.2π ·mm ·mrad 1 2 3 4 5 6 Fig.6. The Modulator of Electron Source: 1-high- voltage unit; 2-demagnetization unit; 3-heating cur- rent control; 4-generator unit; 5-charging inductance unit; 6-capacitor As it can be seen from the diagram, the electron source modulator consists of the following main units: 1. high-voltage unit; 2. demagnetization unit; 3. heating current control; 4. generator unit; 5. charging inductance unit; 6. capacitor. An essential difference of the given diagram from a standard circuit consists in the use of the partial dis- charge capacitor. Here, the role of thermionic relay belongs to a control transistor. The discharge capac- itor from the high-voltage unit is charged via Lcharge up to 2 kV. During voltage pulse generation at the source, a control signal of necessary time duration is fed from the generator unit via a driver to open the transistor and to realize the discharge of the pulse- forming capacity. At the necessary moment, the con- trol signal stops, the capacity ends discharging and the pulse formation ceases. The advantage of this cir- cuit is the absence of the thermionic relay, which is uncontrolled and leads to the forming line depletion. The present circuit can provide voltage pulses of any duration for the source. 136 3.2.3. Accelerating sections Figure 7 shows the main frequency and tem- perature characteristics of the sections employed at the 60 MeV electron beam ejection channel. F a c to r o f a s ta n d in g w a v e F a c to r o f a s ta n d in g w a v e f(MHz) f( M H z ) f( M H z ) f(MHz) Fig.7. The Accelerated sections 3.2.4. The control system Fig.8. Functional diagram of the control system of the 60 MeV beam ejection channel. 1 - control center post in the linac control room, synchronizer, PC, zone lock unit (ZA),4-channel ADC with a multiplexer; 2 - post of magnet component power sources (PS); 3, 4 - modulator and klystron universal locking system; 5 - thermostatting system electronics bay The control system [2] has the following main func- tions: - automated (on operator’s command) control of accelerator switching-on and off, and also control of the accelerator system parameters; - measurement of electron beam parameters; - beam hazard protection of the personnel (zone locks); - indication of system parameters and the electron beam. The main subsystems are: - synchronizing system; - beam parameter control system; - magnet power system; - thermostatting system; - zone lock system; - remote control system (RF, klystron pulse am- plifier) - blocking and signaling system of modulators and klystron pulse amplifiers. The functional diagram of the control system of the 60 MeV beam ejection channel is presented in Fig.8. It can be seen from the diagram that the main systems of the accelerator are controlled by means of a personal computer (Linac operator’s PC) and pro- grammable controllers ADAM. The system also com- prises computer-controlled power sources Marathon CAN-100. The information about the basis parame- ters of the beam is displayed on the PC screen. 3.2.5. Magnetic-component power system The magnetic-component DC power sources [2] (henceforth PS) have been developed in two mod- ifications: ”Marathon CAN-100/1” (voltage from - 100V to +100V, current up to 1A) and ”Marathon CAN-30/4” (voltage from -30 to +30V, current up to 4 A). Structurally, the PS were manufac- tured in two variants: 1) two-channel in a stan- dard 19” case, 3U in height, and 2) single-channel in a metal case. CAN 2.0A and 2.0V, RS232 are the interfaces for the PS control. The PS are in- tended for constructing the CAN-interface network- controlled system of distributed electric power sup- ply. They are depicted in Fig.9. Figure 10 shows the diagrammatic layout of thermocouple el- ements on the 60 MeV beam ejection channel. Fig.9. Magnetic-component power system 3.2.6. The thermostatting system GR Control system DAM -5510 Linac Operator PC ADAM-5018 ADAM-5018 Thermocouples " 1 - " 11 " 1 " 2 " 3 SISTEM UBS Heaters " 9, " 10, " 11 Section 7 Section 8 Heat exchangers " 6," 7," 8 Oth dev " 4, " 5 Fig.10. Scheme of temperature sensors (thermo- couples) arrangement on the accelerator LU-60M equipment 137 The figure shows the thermocouple installation sites, and also the scheme of thermostatting sys- tem control by means of the programmable con- trollers ADAM. Figure 11 illustrates the temperature conditions of the thermostatting system operation. Fig.11. Temperature conditions of the thermostat- ting system operation (without recirculated water) It can be seen from Fig. 11 that the thermostatting system is brought into operation within 20 minutes and it maintains the temperature stability of indi- vidual units at a 1% level. Figure 12 shows the photometering data for the trace on the glass from the beam that has passed without magnetic elements. Fig.12. Photometering data for the trace on the glass It is obvious from the figure that the picture width at half-blackout is no more than 10 mm. We have presented above some design features of the main systems of the 60 MeV beam ejection channel. Dur- ing arrangement of the given systems some defects were revealed, which are now being eliminated. Be- sides, considering that the mentioned channel will be operated in two regimes (short- and long-pulse con- ditions), the injector-buncher as well as the electron source modulators and accelerating sections must be substantially improved. This is connected with the fact that for the operation of the accelerator with the ”Nestor” facility it is the pulse front width is the basic characteristic, because it determines the tran- sient period of a short pulse. For the operation of the accelerator with the experimental facility SP-95 (spectrometer) and the streamer chamber it is the stability of the flat top of the voltage pulse that is of most importance. 4. THE 160...200 MeV BEAM EJECTION CHANNEL 4.1. The main components of the 160...200 MeV beam ejection channel It should be noted that nowadays in the world there are no electron accelerators of energies between 100 and 200 MeV, whereas in this energy range there are a wide variety of problems, which are currently central for nuclear physics. Therefore, it appears of importance for us to work at forming an elec- tron beam of energy up to 200 MeV and an average current of no less than 1 µA , directed to the di- rect output, the experimental facility SP-95 and the streamer chamber. In this connection, two additional sections must be installed for the 60 MeV beam ejection channel; its general layout together with the beam translation system is presented in Fig.13. 7S 8S 9S 10S Fig.13. Layout of the 60 MeV beam ejection channel The phase and energy characteristics of the beam formed in this case are given in Fig. 14. It can be seen from the last figure that here the energy spread of the beam also should not exceed 1 %. Kharkov-65Kharkov-85 LU-60 Kharkov-65 Kharkov-65Kharkov-85 LU-60 Kharkov-65 16 W 16 W16 W 16 W Fig.14. Phase and energy characteristics of the beam formed at 60 and 160...200 MeV ejection channels The expected beam characteristics at the 160...200 MeV ejection channel are given in Table 3. 138 Table 3. The expected beam characteristics at the 160...200 MeV ejection channel Energy, MeV Up to 200.0 Pulse length, ns 1500 Pulsed current, mA 200 Energy spectrum width (steady-state conditions), % 1 Emittance (steady-state conditions), mm·mrad 0.1 4.2. Work plan for upgrading the 160...200 MeV beam ejection channel The upgrading of the 160...200 MeV beam ejection channel calls for the following works to be done: 1. to perform repairs and all-round setting-up of modulator equipment for sections 9 and 10; 2. to install accelerating sections 9 and 10, to make their vertical and horizontal alignments with respect to accelerating sections 7 and 8, and also to align the beam translation system. 3. to arrange the vacuum system of sections 9 and 10; 4. to arrange the RF power supply of sections 9 and 10; 5. to arrange the thermostatting system of sec- tions 9 and 10; 6. to upgrade the control system of the 60 MeV beam ejection system of the with due regard for the necessity of controlling the operation of sections 9 and 10; 7. to restore the radiation shielding. 4.3. Basic research at the direct output of the 160...200 MeV beam ejection channel 1. Characterization of the radiation of axially channeled particles in the crystal at energies between 100 and 160 MeV and elucidation of the conditions, at which this mechanism of radiation is determinant as the beam passes through the crystal. 2. Investigation of the process of coherent radia- tion under conditions of real particle dynamics in the crystal. 3. Studies into coherent radiation characteristics at the conditions of dynamic chaos occurrence during particle motion in the periodic field of crystal atomic chains. 4. Feasibility analysis of producing monochro- matic and polarized radiation in the energy range Eγ∼100...160 MeV. 5. Studies on the processes of interaction between the particle fluxes of energies up to 160 MeV and var- ious materials. 5. THE BEAM TRANSLATION SYSTEM 5.1. The main components of the beam translation system and the spectrometer SP-95 Below we specify the main components of both the beam translation system and the experimental setup SP-95. As of today, the units that require great ef- forts for their upgrading are marked by italicizing, and the units that must be replaced are shown by underlining. The main components of the beam translation system 1. Bending magnets BM-1 and BM-2 with a field stabilization system; 2. electron line with a vacuum valve; 3. high-vacuum pump; 4. hole/slit collimators; 5. monochromators. The main components of the experimental setup SP-95 I. Electron line from the bending magnet BM-2 to the spectrometer SP-95: 1. the electron line itself with a vacuum valve; 2. vacuum facilities including fore pumps (3), a high-vacuum pump (1) and vacuum-measuring de- vices; 3. beam steering system consisting of a corrector and two quadrupole lenses; 4. beam energy compression system; 5. secondary-emission monitor (SEM); 6. Faraday cup (FC); 7. current integrator of the SEM and FC. II. Spectrometer SP-95: 1. scattering chamber; 2. target facilities; a) for solid-state targets +four- and twelve-cell devices; b) for gas targets - GT-1 and GT-2; 3. spectrometer’s magnet with its proper vacuum chamber and cooling system; 4. magnetic field stabilization and measurement system; 5. magnet swing frame; 6. radiation shielding of the electron counter; 7. TV cameras for monitoring the beam position on the target and the bending angle of the magnet. III. Multichannel electron counter: 1. electron counter head; 2. high-stability photomultiplier (PM) power sup- plies of voltage up to 3 kV; 3. electron lines of pulses from the electron detec- tor PM, including coincidence circuits. IV. Computer for control and analysis of measure- ment data. V. Facility control panel. VI. Beam translation system and SP-95 control cabinets. VII. Cabling system: power, signal and control cables. 139 5.2. The basic research program for SP-95 1. Investigation of giant resonances in light nuclei as well as transverse and longitudinal re- sponse functions of nuclei at momentum transfers q=0.5...1.1 fm−1. 2. Investigation of isovector and isoscalar giant resonances. 3. Experimentation to determine the contribution of meson exchange currents to the zero moment of the longitudinal response function. 4. Studies on the extrapolation of response func- tions to the region of high-energy transfers (as indi- cated in the literature, this is the problem, the ab- sence of the solution to which makes impossible the experimental verification of the majority of sum rules calculations). 5. Obtaining of data necessary for determining the exchange part of the Coulomb energy of atomic nuclei. 6. CONCLUSION Thus, here we have outlined technical peculiarities of a number of main systems of the research accelerat- ing complex LUE-300. Work plans have been devel- oped for upgrading the beam ejection channels, the beam translation system and the spectrometer SP-95. The projected lines of research on radiation technolo- gies, basic and applied nuclear physics appear topical for the nearest decade and the years ahead. References 1. N.I. Ayzatskiy, P.G. Gurtovenko, V.F. Zhiglo, E.Yu. Kramarenko, V.M. Kodyakov, V.A. Kush- nir, V.V. Mytrochenko and oth. Compact elec- tron injector for s-band linac // Problems of Atomic Science and Technology. Series ”Nuclear Physics Investigations. 2008, v.3, p.68-72. 2. Yu.I. Akchurin, V.N. Boriskin*, V.A. Mo- mot, A.V. Ivahnenko, M.V. Ivahnenko, S.F. Nescheret, S.K. Romanovsky, A.N. Savchenko, A.A. Sarvilov, S.V. Shelepko, V.I. Tatanov, G.N. Tsebenko, L.V. Yeran. Control system of storage ring nestor LINAC// Problems of Atomic Science and Technology. Series ”Nuclear Physics Investi- gations. 2008, v.3, p.196-199. ПРОЕКТ РЕКОНСТРУКЦИИ ИССЛЕДОВАТЕЛЬСКОГО КОМПЛЕКСА ЛУЭ-300 И НАПРАВЛЕНИЯ ЯДЕРНЫХ ИССЛЕДОВАНИЙ А.Ю. Буки, А.Н. Довбня, С.П. Гоков, В.И. Касилов, С.С. Кочетов, В.А. Кушнир, В.В. Митроченко, Л.А. Махненко, П.Л. Махненко, Т.Ф. Никитина, Н.Г. Шевченко, О.А. Шопен Работа посвящена вопросам реконструкции исследовательского комплекса ЛУЭ-300 и программе планируемых на нем физических исследований. В ускорительном комплексе ЛУЭ-300 имеется в нали- чии три канала вывода электронного пучка, система параллельного переноса и спектрометр СП-95. В работе подробно описаны особенности модернизированных систем комплекса ЛУЭ-300, а также приве- ден план работ по его дальнейшей реконструкции и ожидаемые характеристики электронного пучка. Отдельное внимание уделяется программе физических исследований, проводимых и планируемых на экспериментальном комплексе. ПРОЕКТ РЕКОНСТРУКЦIЇ ДОСЛIДНИЦЬКОГО КОМПЛЕКСУ ЛПЕ-300 ТА НАПРЯМОК ЯДЕРНИХ ДОСЛIДЖЕНЬ О.Ю. Букi, А.М. Довбня, С.П. Гоков, В.Й. Касiлов, С.С. Кочетов, В.А. Кушнiр, В.В. Мiтроченко, Л.О. Махненко, П.Л. Махненко, Т.Ф. Нiкiтiна, М.Г. Шевченко, О.О. Шопен Робота присвячена питанням реконструкцiї дослiдницького комплексу ЛПЕ-300 та програмi фiзич- них дослiджень якi на ньому плануються. У прискорювальному комплексi ЛПЕ-300 є в наявностi три канала виводу електронного пучка, система паралельного переносу та спектрометр СП-95. В роботi до- кладно описано особливостi модернiзованих систем комплексу ЛПЕ-300, а також наведено план робiт що до його подальшої реконструкцiї та характеристики електронного пучка що очiкуються. Окрема увага надiляється програмi фiзичних дослiджень, якi проводяться та якi планується проводити на екс- периментальному комплексi. 140