Побудова класифікаторів на основі ядерних оцінок щільності з використанням апостеріорних ймовірностей конкуруючих множин
Запропоновано пiдхiд до побудови класифiкаторiв на основi ядерних оцiнок щiльностi для розв’язання задач розпiзнавання образiв. Пiдхiд грунтується на використаннi апостерiорної ймовiрностi та роздiлової мiри типу π-значення для ефективного роздiлення конкуруючих множин. Для кожної оцiнки щiльностi...
Saved in:
| Published in: | Доповіді НАН України |
|---|---|
| Date: | 2015 |
| Main Authors: | , |
| Format: | Article |
| Language: | Ukrainian |
| Published: |
Видавничий дім "Академперіодика" НАН України
2015
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/97592 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Побудова класифікаторів на основі ядерних оцінок щільності з використанням апостеріорних ймовірностей конкуруючих множин / А.В. Анісімов, О.А. Галкін // Доповіді Національної академії наук України. — 2015. — № 9. — С. 25-34. — Бібліогр.: 9 назв. — укр. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-97592 |
|---|---|
| record_format |
dspace |
| spelling |
Анісімов, А.В. Галкін, О.А. 2016-03-30T16:25:49Z 2016-03-30T16:25:49Z 2015 Побудова класифікаторів на основі ядерних оцінок щільності з використанням апостеріорних ймовірностей конкуруючих множин / А.В. Анісімов, О.А. Галкін // Доповіді Національної академії наук України. — 2015. — № 9. — С. 25-34. — Бібліогр.: 9 назв. — укр. 1025-6415 https://nasplib.isofts.kiev.ua/handle/123456789/97592 519.7 Запропоновано пiдхiд до побудови класифiкаторiв на основi ядерних оцiнок щiльностi для розв’язання задач розпiзнавання образiв. Пiдхiд грунтується на використаннi апостерiорної ймовiрностi та роздiлової мiри типу π-значення для ефективного роздiлення конкуруючих множин. Для кожної оцiнки щiльностi класу застосовано сiмейство оцiнок щiльностi для кожної множини в широкому дiапазонi смуг пропускання. Запропоновано та адаптовано процедуру об’єднання результатiв класифiкацiї на рiзних рiвнях згладжування, що забезпечило гнучке використання рiзних смуг пропускання для рiзних пар конкуруючих класiв. Статистичнi невизначеностi обчислено на основi приблизно оцiнених ймовiрностей помилкової класифiкацiї. Предложен подход к построению классификаторов на основе ядерных оценок плотности для решения задач распознавания образов. Подход основан на использовании апостериорной вероятности и разделительной меры типа π-значение для эффективного разделения конкурирующих множеств. Для каждой оценки плотности класса применено семейство оценок плотности для каждого множества в широком диапазоне полос пропускания. Предложена и адаптирована процедура объединения результатов классификации на разных уровнях сглаживания, что обеспечило гибкое использование различных полос пропускания для различных пар конкурирующих классов. Статистические неопределенности вычислены на основе приближенно оцененных вероятностей ошибочной классификации. An approach is proposed to construct classifiers based on kernel density estimates for solving pattern recognition problems. The approach is based on the use of the a posteriori probability and a distributive π-type measure for the effective division of competing sets. The family of density estimates is applied to each set in a wide range of bandwidths for each estimate of the class density. A procedure is proposed and adapted to combine the classification results on different levels of smoothing that provides a flexible use of different bandwidths for different pairs of competing classes. Statistical uncertainties are calculated on the basis of approximate estimated probabilities of a misclassification. uk Видавничий дім "Академперіодика" НАН України Доповіді НАН України Інформатика та кібернетика Побудова класифікаторів на основі ядерних оцінок щільності з використанням апостеріорних ймовірностей конкуруючих множин Построение классификаторов на основе ядерных оценок плотности с использованием апостериорных вероятностей конкурирующих множеств Construction of classifiers based on kernel density estimations using the a posteriori probabilities of competing sets Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Побудова класифікаторів на основі ядерних оцінок щільності з використанням апостеріорних ймовірностей конкуруючих множин |
| spellingShingle |
Побудова класифікаторів на основі ядерних оцінок щільності з використанням апостеріорних ймовірностей конкуруючих множин Анісімов, А.В. Галкін, О.А. Інформатика та кібернетика |
| title_short |
Побудова класифікаторів на основі ядерних оцінок щільності з використанням апостеріорних ймовірностей конкуруючих множин |
| title_full |
Побудова класифікаторів на основі ядерних оцінок щільності з використанням апостеріорних ймовірностей конкуруючих множин |
| title_fullStr |
Побудова класифікаторів на основі ядерних оцінок щільності з використанням апостеріорних ймовірностей конкуруючих множин |
| title_full_unstemmed |
Побудова класифікаторів на основі ядерних оцінок щільності з використанням апостеріорних ймовірностей конкуруючих множин |
| title_sort |
побудова класифікаторів на основі ядерних оцінок щільності з використанням апостеріорних ймовірностей конкуруючих множин |
| author |
Анісімов, А.В. Галкін, О.А. |
| author_facet |
Анісімов, А.В. Галкін, О.А. |
| topic |
Інформатика та кібернетика |
| topic_facet |
Інформатика та кібернетика |
| publishDate |
2015 |
| language |
Ukrainian |
| container_title |
Доповіді НАН України |
| publisher |
Видавничий дім "Академперіодика" НАН України |
| format |
Article |
| title_alt |
Построение классификаторов на основе ядерных оценок плотности с использованием апостериорных вероятностей конкурирующих множеств Construction of classifiers based on kernel density estimations using the a posteriori probabilities of competing sets |
| description |
Запропоновано пiдхiд до побудови класифiкаторiв на основi ядерних оцiнок щiльностi
для розв’язання задач розпiзнавання образiв. Пiдхiд грунтується на використаннi апостерiорної ймовiрностi та роздiлової мiри типу π-значення для ефективного роздiлення конкуруючих множин. Для кожної оцiнки щiльностi класу застосовано сiмейство оцiнок щiльностi для кожної множини в широкому дiапазонi смуг пропускання. Запропоновано та адаптовано процедуру об’єднання результатiв класифiкацiї на рiзних рiвнях згладжування, що забезпечило гнучке використання рiзних смуг пропускання для рiзних
пар конкуруючих класiв. Статистичнi невизначеностi обчислено на основi приблизно оцiнених ймовiрностей помилкової класифiкацiї.
Предложен подход к построению классификаторов на основе ядерных оценок плотности
для решения задач распознавания образов. Подход основан на использовании апостериорной
вероятности и разделительной меры типа π-значение для эффективного разделения конкурирующих множеств. Для каждой оценки плотности класса применено семейство оценок плотности для каждого множества в широком диапазоне полос пропускания. Предложена
и адаптирована процедура объединения результатов классификации на разных уровнях сглаживания, что обеспечило гибкое использование различных полос пропускания для различных пар конкурирующих классов. Статистические неопределенности вычислены на основе приближенно оцененных вероятностей ошибочной классификации.
An approach is proposed to construct classifiers based on kernel density estimates for solving pattern
recognition problems. The approach is based on the use of the a posteriori probability and a distributive
π-type measure for the effective division of competing sets. The family of density estimates is
applied to each set in a wide range of bandwidths for each estimate of the class density. A procedure
is proposed and adapted to combine the classification results on different levels of smoothing that
provides a flexible use of different bandwidths for different pairs of competing classes. Statistical
uncertainties are calculated on the basis of approximate estimated probabilities of a misclassification.
|
| issn |
1025-6415 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/97592 |
| citation_txt |
Побудова класифікаторів на основі ядерних оцінок щільності з використанням апостеріорних ймовірностей конкуруючих множин / А.В. Анісімов, О.А. Галкін // Доповіді Національної академії наук України. — 2015. — № 9. — С. 25-34. — Бібліогр.: 9 назв. — укр. |
| work_keys_str_mv |
AT anísímovav pobudovaklasifíkatorívnaosnovíâdernihocínokŝílʹnostízvikoristannâmaposteríornihimovírnosteikonkuruûčihmnožin AT galkínoa pobudovaklasifíkatorívnaosnovíâdernihocínokŝílʹnostízvikoristannâmaposteríornihimovírnosteikonkuruûčihmnožin AT anísímovav postroenieklassifikatorovnaosnoveâdernyhocenokplotnostisispolʹzovaniemaposteriornyhveroâtnosteikonkuriruûŝihmnožestv AT galkínoa postroenieklassifikatorovnaosnoveâdernyhocenokplotnostisispolʹzovaniemaposteriornyhveroâtnosteikonkuriruûŝihmnožestv AT anísímovav constructionofclassifiersbasedonkerneldensityestimationsusingtheaposterioriprobabilitiesofcompetingsets AT galkínoa constructionofclassifiersbasedonkerneldensityestimationsusingtheaposterioriprobabilitiesofcompetingsets |
| first_indexed |
2025-12-07T15:45:02Z |
| last_indexed |
2025-12-07T15:45:02Z |
| _version_ |
1850864883617234944 |