Структура розв’язкiв диференцiальних рiвнянь у банаховому просторi на нескiнченному iнтервалi
Описано всi розв’язки рiвняння вигляду (d/dt − A)^n(d/dt + A)^m y(t) = 0 (n,m ∈ N₀ = {0}∪N, n + m ≥ 1) на пiвосi або на всiй числовiй осi, де A — iнфiнiтезимальний генератор обмеженої аналiтичної C₀-пiвгрупи лiнiйних операторiв у банаховому просторi. Показано, що будь-який розв’язок розглянутого рi...
Gespeichert in:
| Veröffentlicht in: | Доповіді НАН України |
|---|---|
| Datum: | 2016 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | Ukrainian |
| Veröffentlicht: |
Видавничий дім "Академперіодика" НАН України
2016
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/98998 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Структура розв’язкiв диференцiальних рiвнянь у банаховому просторi на нескiнченному iнтервалi / В.М. Горбачук // Доповiдi Нацiональної академiї наук України. — 2016. — № 2. — С. 7-12. — Бібліогр.: 6 назв. — укр. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | Описано всi розв’язки рiвняння вигляду (d/dt − A)^n(d/dt + A)^m y(t) = 0 (n,m ∈ N₀ = {0}∪N, n + m ≥ 1) на пiвосi або на всiй числовiй осi, де A — iнфiнiтезимальний
генератор обмеженої аналiтичної C₀-пiвгрупи лiнiйних операторiв у банаховому просторi. Показано, що будь-який розв’язок розглянутого рiвняння на (0,∞) є аналiтичною
вектор-функцiєю на цьому промiжку, а кожен його розв’язок на (−∞,∞) допускає продовження до цiлої вектор-функцiї. В обох випадках для розв’якiв встановлено аналог
принципу Фрагмена–Лiндельофа.
Описаны все решения уравнения вида (d/dt − A)^n(d/dt + A)^m y(t) = 0 (n,m ∈ N₀ = {0}∪N, n + m ≥ 1) на полуоси или на всей числовой оси, где A — инфинитезимальный генератор ограниченной аналитической C₀-полугруппы линейных операторов в банаховом пространстве. Показано, что всякое решение рассмотренного уравнения на (0,∞) является аналитической вектор-функцией на этом промежутке, а каждое его решение на (−∞,∞) допускает продолжение до целой вектор-функции. В обоих случаях для решений установлен аналог принципа Фрагмена–Линделефа.
For an equation of the form (d/dt − A)^n(d/dt + A)^m y(t) = 0 (n,m ∈ N₀ = {0}∪N, n + m ≥ 1)
on the semiaxis or the whole real axis, where A is the infinitesimal generator of a bounded analytic
C₀-semigroup of linear operators on a Banach space, all its solutions are described. It is shown that
any solution of the equation under consideration on (0,∞) is an analytic vector-valued function
on this semiaxis, and every its solution on (−∞,∞) admits an extension to an entire vectorvalued
function. In both cases, an analogue of the Phragm´en-Lindel¨of principle for the solutions is established.
|
|---|---|
| ISSN: | 1025-6415 |