Структура розв’язкiв диференцiальних рiвнянь у банаховому просторi на нескiнченному iнтервалi

Описано всi розв’язки рiвняння вигляду (d/dt − A)^n(d/dt + A)^m y(t) = 0 (n,m ∈ N₀ = {0}∪N, n + m ≥ 1) на пiвосi або на всiй числовiй осi, де A — iнфiнiтезимальний генератор обмеженої аналiтичної C₀-пiвгрупи лiнiйних операторiв у банаховому просторi. Показано, що будь-який розв’язок розглянутого рi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Доповіді НАН України
Datum:2016
1. Verfasser: Горбачук, В.М.
Format: Artikel
Sprache:Ukrainian
Veröffentlicht: Видавничий дім "Академперіодика" НАН України 2016
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/98998
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Структура розв’язкiв диференцiальних рiвнянь у банаховому просторi на нескiнченному iнтервалi / В.М. Горбачук // Доповiдi Нацiональної академiї наук України. — 2016. — № 2. — С. 7-12. — Бібліогр.: 6 назв. — укр.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Описано всi розв’язки рiвняння вигляду (d/dt − A)^n(d/dt + A)^m y(t) = 0 (n,m ∈ N₀ = {0}∪N, n + m ≥ 1) на пiвосi або на всiй числовiй осi, де A — iнфiнiтезимальний генератор обмеженої аналiтичної C₀-пiвгрупи лiнiйних операторiв у банаховому просторi. Показано, що будь-який розв’язок розглянутого рiвняння на (0,∞) є аналiтичною вектор-функцiєю на цьому промiжку, а кожен його розв’язок на (−∞,∞) допускає продовження до цiлої вектор-функцiї. В обох випадках для розв’якiв встановлено аналог принципу Фрагмена–Лiндельофа. Описаны все решения уравнения вида (d/dt − A)^n(d/dt + A)^m y(t) = 0 (n,m ∈ N₀ = {0}∪N, n + m ≥ 1) на полуоси или на всей числовой оси, где A — инфинитезимальный генератор ограниченной аналитической C₀-полугруппы линейных операторов в банаховом пространстве. Показано, что всякое решение рассмотренного уравнения на (0,∞) является аналитической вектор-функцией на этом промежутке, а каждое его решение на (−∞,∞) допускает продолжение до целой вектор-функции. В обоих случаях для решений установлен аналог принципа Фрагмена–Линделефа. For an equation of the form (d/dt − A)^n(d/dt + A)^m y(t) = 0 (n,m ∈ N₀ = {0}∪N, n + m ≥ 1) on the semiaxis or the whole real axis, where A is the infinitesimal generator of a bounded analytic C₀-semigroup of linear operators on a Banach space, all its solutions are described. It is shown that any solution of the equation under consideration on (0,∞) is an analytic vector-valued function on this semiaxis, and every its solution on (−∞,∞) admits an extension to an entire vectorvalued function. In both cases, an analogue of the Phragm´en-Lindel¨of principle for the solutions is established.
ISSN:1025-6415