О задаче Римана–Гильберта для аналитических функций в круговых областях

Доказано существование однозначных аналитических решений в единичном круге и многозначных аналитических решений в областях, ограниченных конечным числом окружностей, задачи Римана–Гильберта с коэффициентами счетно-ограниченной вариации и граничными данными, измеримыми относительно логарифмической ем...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Доповіді НАН України
Datum:2016
Hauptverfasser: Ефимушкин, А.С., Рязанов, В.И.
Format: Artikel
Sprache:Russian
Veröffentlicht: Видавничий дім "Академперіодика" НАН України 2016
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/98999
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:О задаче Римана–Гильберта для аналитических функций в круговых областях / А.С. Ефимушкин, В.И. Рязанов // Доповiдi Нацiональної академiї наук України. — 2016. — № 2. — С. 13-16. — Бібліогр.: 10 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Доказано существование однозначных аналитических решений в единичном круге и многозначных аналитических решений в областях, ограниченных конечным числом окружностей, задачи Римана–Гильберта с коэффициентами счетно-ограниченной вариации и граничными данными, измеримыми относительно логарифмической емкости. Показано, что пространства решений имеют бесконечную размерность. Доведено iснування однозначних аналiтичних розв’язкiв в одиничному колi та багатозначних аналiтичних розв’язкiв в областях, обмежених скiнченним числом кiл, задачi Рiмана–Гiльберта iз коефiцiєнтами злiченно-обмеженої варiацiї та граничними даними, що є вимiрюваними вiдносно логарифмiчної ємностi. Показано, що простори розв’язкiв мають нескiнченну розмiрнiсть. The existence of single-valued analytic solutions in a unit disk and multivalent analytic solutions in domains bounded by a finite collection of circles is proved for the Riemann–Hilbert problem with coefficients of sigma finite variation and with boundary data that are measurable with respect to the logarithmic capacity. It is shown that these spaces of solutions have the infinite dimension.
ISSN:1025-6415