Метод побудови операторів із заданими проекціями вздовж перетинних прямих, які інтерполюють f(x, y) в точках перетину цих прямих

Предложен метод построения операторов приближения функции f(x, y), который интерполирует f(x, y) в точках пересечения прямыхΓk, k = 1, 2, …, M и имеет проекции вдоль этих прямых, совпадающих с проекциями от f(x, y) вдоль этих прямых. Метод построения операторов интерполяции функций двух переменных с...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Проблемы машиностроения
Datum:2013
Hauptverfasser: Литвин, О.О., Хурдей, Є.Л.
Format: Artikel
Sprache:Ukrainian
Veröffentlicht: Інстиут проблем машинобудування ім. А.М. Підгорного НАН України 2013
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/99134
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Метод побудови операторів із заданими проекціями вздовж перетинних прямих, які інтерполюють f(x, y) в точках перетину цих прямих / О.О. Литвин, Є.Л. Хурдей // Проблемы машиностроения. — 2013. — Т. 16, № 3. — С. 60-67. — Бібліогр.: 15 назв. — укр.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Предложен метод построения операторов приближения функции f(x, y), который интерполирует f(x, y) в точках пересечения прямыхΓk, k = 1, 2, …, M и имеет проекции вдоль этих прямых, совпадающих с проекциями от f(x, y) вдоль этих прямых. Метод построения операторов интерполяции функций двух переменных с заданными проекциями исследуется для случая пересекающихся прямых, никакие три из которых не пересекаются в одной точке. Рассмотрены примеры построения интерполяционных операторов с заданными проекциями вдоль M = 3, 4 пересекающихся прямых. Запропоновано метод побудови операторів наближення функції f(x, y), який інтерполює f(x, y) в точках перетину прямих Γk, k = 1, 2, …, M і має проекції вздовж цих прямих, які збігаються з проекціями від f(x, y) вздовж цих прямих. Метод побудови операторів інтерполяції функцій двох змінних із заданими проекціями досліджується для випадку перетинних прямих, ніякі три з яких не перетинаються в одній точці. Розглянуто приклади побудови інтерполяційних операторів із заданими проекціями вздовж M = 3, 4 перетинних прямих. In this article was proposed a method for constructing approximation operator function f(x, y) that interpolates f(x, y) the points of intersection of lines Gk, k = 1, 2, …, M and the projection is along these lines that match the projections of along these lines. Method of constructing operators interpolation functions of 2 variables with given projections investigated for the case of lines that intersect and no three intersect at one point. Were considered examples.
ISSN:0131-2928