Взаимодействие пологих оболочек с дозвуковым, трехмерным потенциальным течением газа
Для исследования взаимодействия колеблющейся пологой оболочки с трехмерным дозвуковым течением газа выводится система сингулярных интегральных уравнений относительно аэродинамических производных перепада давления. Давление и потенциал скоростей удовлетворяют уравнению Бернулли. Потенциал скоростей и...
Gespeichert in:
| Datum: | 2015 |
|---|---|
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | Russian |
| Veröffentlicht: |
Інстиут проблем машинобудування ім. А.М. Підгорного НАН України
2015
|
| Schriftenreihe: | Проблемы машиностроения |
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/99249 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Взаимодействие пологих оболочек с дозвуковым, трехмерным потенциальным течением газа / К.В. Аврамов // Проблемы машиностроения. — 2015. — Т. 18, № 4/2. — С. 59-65. — Бібліогр.: 9 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | Для исследования взаимодействия колеблющейся пологой оболочки с трехмерным дозвуковым течением газа выводится система сингулярных интегральных уравнений относительно аэродинамических производных перепада давления. Давление и потенциал скоростей удовлетворяют уравнению Бернулли. Потенциал скоростей и функция давления при колебаниях оболочки представлена в виде линейной функции относительно обобщенных координат и обобщенных скоростей конструкции. Аэродинамические производные удовлетворяют уравнению Лапласа. Эта система уравнений решается с помощью метода дискретных вихрей. В результате его применения система сингулярных интегральных уравнений сводиться к системе линейных алгебраических уравнений большой размерности. Для описания колебаний пологой оболочки получена система обыкновенных дифференциальных уравнений с помощью метода заданных форм. Для выбора форм колебаний, которые учитываются в разложениях перемещений, предлагается сравнивать частоту автоколебаний с собственными частотами учитываемых форм колебаний. Формы колебаний выбираются так, чтобы полусумма максимальной и минимальной частоты была как можно ближе к частоте автоколебаний. Для исследования динамической неустойчивости оболочки рассчитываются характеристические показатели. Численно исследуется влияние кривизны пологой оболочки и частоты автоколебаний на параметры ее динамической неустойчивости. |
|---|