К решению нелинейных обратных граничных задач теплопроводности

В данной работе для получения устойчивого решения нелинейной обратной граничной задачи теплопроводности применяется метод регуляризации А. Н. Тихонова с эффективным алгоритмом поиска регуляризирующего параметра. Искомый тепловой поток на границе по временной координате аппроксимируем сплайнами Шёнбе...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Проблемы машиностроения
Datum:2016
Hauptverfasser: Мацевитый, Ю.М., Сафонов, Н.А., Ганчин, В.В.
Format: Artikel
Sprache:Russian
Veröffentlicht: Інстиут проблем машинобудування ім. А.М. Підгорного НАН України 2016
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/99258
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:К решению нелинейных обратных граничных задач теплопроводности / Ю.М. Мацевитый, Н.А. Сафонов, В.В. Ганчин // Проблемы машиностроения. — 2016. — Т. 19, № 1. — С. 28-36. — Бібліогр.: 11 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-99258
record_format dspace
spelling Мацевитый, Ю.М.
Сафонов, Н.А.
Ганчин, В.В.
2016-04-25T17:04:05Z
2016-04-25T17:04:05Z
2016
К решению нелинейных обратных граничных задач теплопроводности / Ю.М. Мацевитый, Н.А. Сафонов, В.В. Ганчин // Проблемы машиностроения. — 2016. — Т. 19, № 1. — С. 28-36. — Бібліогр.: 11 назв. — рос.
0131-2928
https://nasplib.isofts.kiev.ua/handle/123456789/99258
536.24
В данной работе для получения устойчивого решения нелинейной обратной граничной задачи теплопроводности применяется метод регуляризации А. Н. Тихонова с эффективным алгоритмом поиска регуляризирующего параметра. Искомый тепловой поток на границе по временной координате аппроксимируем сплайнами Шёнберга первой степени. Для применения метода функций влияния к нелинейной задаче теплопроводности сводим её к последовательности линейных обратных граничных задач, используя итерационный процесс. Данный итерационный процесс заканчивается при достижении наперёд заданной точности для восстановленной температуры. В статье представлено обоснование использования функций влияния для аппроксимации решения линейной краевой задачи теплопроводности. В частности, показано, что функции влияния линейно независимы на временном интервале (0, ¥) при фиксированной пространственной переменной. Этот факт используется для идентификации температуры на границе или внутри области. Проведены многочисленные вычислительные эксперименты с использованием стабилизирующих функционалов нулевого и первого порядка, а также анализ влияния величины дисперсии случайной погрешности измерения на погрешность получаемого решения. В результате вычислительного эксперимента выяснилось, что для данного класса задач регуляризация первого порядка оказалась более эффективной, чем регуляризация нулевого порядка. Также результаты вычислительного эксперимента свидетельствуют, что при увеличении количества точек, в которых задана экспериментальная температура, точность идентификации возрастает
Для отримання стійкого розв’язку нелінійної оберненої граничної задачі теплопровідності застосовується метод регуляризації А. М. Тихонова з ефективним алгоритмом регуляризуючого пошуку параметра. Шуканий тепловий потік на границі по часовій координаті апроксимуємо сплайнами Шьонберга першого ступеня. Для застосування методу функцій впливу до нелінійної задачі теплопровідності приводимо її до послідовності лінійних обернених граничних задач. Проведені численні обчислювальні експерименти з використанням стабілізуючих функціоналів нульового та першого порядку, а також аналіз впливу величини дисперсії випадкової похибки вимірювання на отриманий розв’язок. У результаті обчислювального експерименту з'ясувалося, що для даного класу задач регуляризація першого порядку виявилася більш ефективною, ніж регуляризація нульового порядку.
In this paper, to obtain a stable solution of nonlinear inverse boundary problem of heat conduction the method of Tikhonov regularization with effectiveness-tive search algorithm regularizing parameter. Seeking the heat flux at the boundary of the time coordinate splines approximate Schoenberg first ste-interest. To apply the method of influence functions for the nonlinear heat conduction problem reduces it to a sequence of linear inverse boundary value problems using the diet-iteration process. This iterative process ends when the on-perёd specified accuracy for temperature recovery. The article presents a study on the use of the influence functions for approximating the solution of a linear edge-value problem of heat conduction. In particular it is shown that the influence functions are linearly independent in the time interval (0, ) at a fixed spatial variable. This fact is used to identify the temperature at the boundary or inside the area. Conducted numerous computational experiments using functional stabilizing zero and first order, and an analysis of the impact of the variance of the random error of measurement error in the obtained solution. The results of computational experiments revealed that for the class of first-order regularization was more effective than the regularization of the zero order. Also, the results of computational experiments show that by increasing the number of points where the specified Expo experimental temperature, increases the accuracy of the identification.
ru
Інстиут проблем машинобудування ім. А.М. Підгорного НАН України
Проблемы машиностроения
Прикладная математика
К решению нелинейных обратных граничных задач теплопроводности
The solution of nonlinear inverse boundary problem of heat conduction
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title К решению нелинейных обратных граничных задач теплопроводности
spellingShingle К решению нелинейных обратных граничных задач теплопроводности
Мацевитый, Ю.М.
Сафонов, Н.А.
Ганчин, В.В.
Прикладная математика
title_short К решению нелинейных обратных граничных задач теплопроводности
title_full К решению нелинейных обратных граничных задач теплопроводности
title_fullStr К решению нелинейных обратных граничных задач теплопроводности
title_full_unstemmed К решению нелинейных обратных граничных задач теплопроводности
title_sort к решению нелинейных обратных граничных задач теплопроводности
author Мацевитый, Ю.М.
Сафонов, Н.А.
Ганчин, В.В.
author_facet Мацевитый, Ю.М.
Сафонов, Н.А.
Ганчин, В.В.
topic Прикладная математика
topic_facet Прикладная математика
publishDate 2016
language Russian
container_title Проблемы машиностроения
publisher Інстиут проблем машинобудування ім. А.М. Підгорного НАН України
format Article
title_alt The solution of nonlinear inverse boundary problem of heat conduction
description В данной работе для получения устойчивого решения нелинейной обратной граничной задачи теплопроводности применяется метод регуляризации А. Н. Тихонова с эффективным алгоритмом поиска регуляризирующего параметра. Искомый тепловой поток на границе по временной координате аппроксимируем сплайнами Шёнберга первой степени. Для применения метода функций влияния к нелинейной задаче теплопроводности сводим её к последовательности линейных обратных граничных задач, используя итерационный процесс. Данный итерационный процесс заканчивается при достижении наперёд заданной точности для восстановленной температуры. В статье представлено обоснование использования функций влияния для аппроксимации решения линейной краевой задачи теплопроводности. В частности, показано, что функции влияния линейно независимы на временном интервале (0, ¥) при фиксированной пространственной переменной. Этот факт используется для идентификации температуры на границе или внутри области. Проведены многочисленные вычислительные эксперименты с использованием стабилизирующих функционалов нулевого и первого порядка, а также анализ влияния величины дисперсии случайной погрешности измерения на погрешность получаемого решения. В результате вычислительного эксперимента выяснилось, что для данного класса задач регуляризация первого порядка оказалась более эффективной, чем регуляризация нулевого порядка. Также результаты вычислительного эксперимента свидетельствуют, что при увеличении количества точек, в которых задана экспериментальная температура, точность идентификации возрастает Для отримання стійкого розв’язку нелінійної оберненої граничної задачі теплопровідності застосовується метод регуляризації А. М. Тихонова з ефективним алгоритмом регуляризуючого пошуку параметра. Шуканий тепловий потік на границі по часовій координаті апроксимуємо сплайнами Шьонберга першого ступеня. Для застосування методу функцій впливу до нелінійної задачі теплопровідності приводимо її до послідовності лінійних обернених граничних задач. Проведені численні обчислювальні експерименти з використанням стабілізуючих функціоналів нульового та першого порядку, а також аналіз впливу величини дисперсії випадкової похибки вимірювання на отриманий розв’язок. У результаті обчислювального експерименту з'ясувалося, що для даного класу задач регуляризація першого порядку виявилася більш ефективною, ніж регуляризація нульового порядку. In this paper, to obtain a stable solution of nonlinear inverse boundary problem of heat conduction the method of Tikhonov regularization with effectiveness-tive search algorithm regularizing parameter. Seeking the heat flux at the boundary of the time coordinate splines approximate Schoenberg first ste-interest. To apply the method of influence functions for the nonlinear heat conduction problem reduces it to a sequence of linear inverse boundary value problems using the diet-iteration process. This iterative process ends when the on-perёd specified accuracy for temperature recovery. The article presents a study on the use of the influence functions for approximating the solution of a linear edge-value problem of heat conduction. In particular it is shown that the influence functions are linearly independent in the time interval (0, ) at a fixed spatial variable. This fact is used to identify the temperature at the boundary or inside the area. Conducted numerous computational experiments using functional stabilizing zero and first order, and an analysis of the impact of the variance of the random error of measurement error in the obtained solution. The results of computational experiments revealed that for the class of first-order regularization was more effective than the regularization of the zero order. Also, the results of computational experiments show that by increasing the number of points where the specified Expo experimental temperature, increases the accuracy of the identification.
issn 0131-2928
url https://nasplib.isofts.kiev.ua/handle/123456789/99258
citation_txt К решению нелинейных обратных граничных задач теплопроводности / Ю.М. Мацевитый, Н.А. Сафонов, В.В. Ганчин // Проблемы машиностроения. — 2016. — Т. 19, № 1. — С. 28-36. — Бібліогр.: 11 назв. — рос.
work_keys_str_mv AT macevityiûm krešeniûnelineinyhobratnyhgraničnyhzadačteploprovodnosti
AT safonovna krešeniûnelineinyhobratnyhgraničnyhzadačteploprovodnosti
AT gančinvv krešeniûnelineinyhobratnyhgraničnyhzadačteploprovodnosti
AT macevityiûm thesolutionofnonlinearinverseboundaryproblemofheatconduction
AT safonovna thesolutionofnonlinearinverseboundaryproblemofheatconduction
AT gančinvv thesolutionofnonlinearinverseboundaryproblemofheatconduction
first_indexed 2025-12-07T17:32:35Z
last_indexed 2025-12-07T17:32:35Z
_version_ 1850871650423144448