Experimental research of multicomponent multilayer ion-plasma avinit coatings

Metallographic examination of improved structures of Avinit С multilayer nitride-based coatings, particularly coatings of Ti-Al-N system and Mo-N system-based coating have been carried out. Use of effective methods of surface cleaning and three-level arc control system in the techniques under deve...

Full description

Saved in:
Bibliographic Details
Published in:Физическая инженерия поверхности
Date:2013
Main Authors: Sagalovych, A.V., Kononykhin, A.V., Popov, V.V., Sagalovych, V.V.
Format: Article
Language:English
Published: Науковий фізико-технологічний центр МОН та НАН України 2013
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/99265
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Experimental research of multicomponent multilayer ion-plasma avinit coatings / A.V. Sagalovych, A.V. Kononykhin, V.V. Popov, V.V. Sagalovych // Физическая инженерия поверхности. — 2013. — Т. 11, № 1. — С. 4–17. — Бібліогр.: 15 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-99265
record_format dspace
spelling Sagalovych, A.V.
Kononykhin, A.V.
Popov, V.V.
Sagalovych, V.V.
2016-04-25T17:30:59Z
2016-04-25T17:30:59Z
2013
Experimental research of multicomponent multilayer ion-plasma avinit coatings / A.V. Sagalovych, A.V. Kononykhin, V.V. Popov, V.V. Sagalovych // Физическая инженерия поверхности. — 2013. — Т. 11, № 1. — С. 4–17. — Бібліогр.: 15 назв. — англ.
1999-8074
https://nasplib.isofts.kiev.ua/handle/123456789/99265
621.793.7
Metallographic examination of improved structures of Avinit С multilayer nitride-based coatings, particularly coatings of Ti-Al-N system and Mo-N system-based coating have been carried out. Use of effective methods of surface cleaning and three-level arc control system in the techniques under development for prevention of surface damaging, caused by micro arcs, allows to apply coatings of precision and high finish class surfaces up to 12 – 13 grade of finish without deterioration of surface finish class. The experimental findings confirm a possibility of low-temperature deposition of very hard Avinit С coatings based on nitrides of metals under the conditions providing good adhesion to the parent material (steel DIN 1.2379 (Х12Ф1) without decrease in strength properties of the steel (<200 °C) and without distortion of the coated surfaces. Tribological examination of advanced constructions of multicomponent multilayer Avinit coatings under aviation fuel ТS-1 for the purpose of selection of coating materials for friction parts of precision couples used in aggregate building. Deposition of coatings effectively raises durability of friction pairs to scoring. Advanced coatings have low friction coefficients (0.75 − 0.095) at loadings up to 2.0 kN and have shown high wear resistance. The received results allow to develop software products for obtaining of multicomponent multilayer coatings of required composition using Avinit equipment and tryout stable techniques for deposition of functional coatings to be used in friction parts of precision couples of standard aircraft units.
Проведеныметаллографические исследования улучшенной структурымногослойных, на основе нитридов, покрытий Avinit C, в частности, покрытий систем Ti-Al-N и Mo-N. На стадии разработки методов использовались эффективные средства очистки поверхности и трехуровневая система управления дугой для предотвращения повреждения поверхности, вызванного микродугaми. Методы позволяют наносить покрытия высокой точности с финишной чистотой поверхности 12 – 13 класса без снижения качества исходной поверхности. Экспериментальные данные подтверждают возможность низкотемпературного осаждения трудно осаждаемых покрытий Avinit C на основе нитридов металлов в условиях, обеспечивающих хорошую адгезию к основным материалам (сталь DIN 1.2379 (Х12Ф1)) без снижения прочностных свойств стали (< 200 °C) и без искажений покрытием. Трибологические качества предложенных конструкций многокомпонентных многослойных покрытий Avinit под авиационное топливо ТС-1 с целью выбора лакокрасочных материалов для точных трущихся пар деталей машин также рассматриваются в данной работе. Показано, что применение защитных покрытий эффективно повышает долговечность пар трения. Покрытия обладают низким коэффициентом трения (0.075 – 0.095) при нагрузках до 2,0 кН показали высокую износостойкость. Полученные результаты позволяют разрабатывать программные продукты для получения многокомпонентных многослойных покрытий необходимого состава с использованием Avinit оборудования и стабильных функциональных покрытий для использования в точных трущихся парах деталей стандартных модулей самолетов.
Проведенометалографічні дослідження поліпшеної структури багатошарових, на основі нітридів, покриттів Avinit C, зокрема, покриттів систем Ti-Al-N і Mo-N. На стадії розробки методів застосовувалися ефективні засоби очищення поверхні і трирівнева система управління дугою для запобігання пошкодження поверхні, викликаного мікродугами. Методи дозволяють наносити покриття високої точності з фінішною чистотою поверхні 12 – 13 класу без зниження якості вихідної поверхні. Експериментальні дані підтверджують можливість низькотемпературного осадження, покриттів Avinit C, які важко осаджуються, на основі нітридів металів в умовах, що забезпечують хорошу адгезію до основних матеріалів (сталь DIN 1.2379 (Х12Ф1)) без зниження міцнісних властивостей сталі (< 200 °C) і без спотворень покриттям. Трибологічні якості запропонованих конструкцій багатокомпонентних багатошарових покриттів Avinit під авіаційне паливо ТС-1 з метою вибору лакофарбових матеріалів для точних пар тертя деталей машин також розглядаються в даній роботі. Показано, що застосування захисних покриттів ефективно підвищує довговічність пар тертя. Покриття характеризуються низьким коефіцієнтом тертя (0.075 – 0.095) при навантаженнях до 2,0 кН і показали високу зносостійкість. Отримані результати дозволяють розробляти програмні продукти для отримання багатокомпонентних багатошарових покриттів необхідного складу з використанням Avinit обладнання і стабільних функціональних покриттів для застосування в точних парах тертя деталей стандартних модулів літаків.
en
Науковий фізико-технологічний центр МОН та НАН України
Физическая инженерия поверхности
Experimental research of multicomponent multilayer ion-plasma avinit coatings
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Experimental research of multicomponent multilayer ion-plasma avinit coatings
spellingShingle Experimental research of multicomponent multilayer ion-plasma avinit coatings
Sagalovych, A.V.
Kononykhin, A.V.
Popov, V.V.
Sagalovych, V.V.
title_short Experimental research of multicomponent multilayer ion-plasma avinit coatings
title_full Experimental research of multicomponent multilayer ion-plasma avinit coatings
title_fullStr Experimental research of multicomponent multilayer ion-plasma avinit coatings
title_full_unstemmed Experimental research of multicomponent multilayer ion-plasma avinit coatings
title_sort experimental research of multicomponent multilayer ion-plasma avinit coatings
author Sagalovych, A.V.
Kononykhin, A.V.
Popov, V.V.
Sagalovych, V.V.
author_facet Sagalovych, A.V.
Kononykhin, A.V.
Popov, V.V.
Sagalovych, V.V.
publishDate 2013
language English
container_title Физическая инженерия поверхности
publisher Науковий фізико-технологічний центр МОН та НАН України
format Article
description Metallographic examination of improved structures of Avinit С multilayer nitride-based coatings, particularly coatings of Ti-Al-N system and Mo-N system-based coating have been carried out. Use of effective methods of surface cleaning and three-level arc control system in the techniques under development for prevention of surface damaging, caused by micro arcs, allows to apply coatings of precision and high finish class surfaces up to 12 – 13 grade of finish without deterioration of surface finish class. The experimental findings confirm a possibility of low-temperature deposition of very hard Avinit С coatings based on nitrides of metals under the conditions providing good adhesion to the parent material (steel DIN 1.2379 (Х12Ф1) without decrease in strength properties of the steel (<200 °C) and without distortion of the coated surfaces. Tribological examination of advanced constructions of multicomponent multilayer Avinit coatings under aviation fuel ТS-1 for the purpose of selection of coating materials for friction parts of precision couples used in aggregate building. Deposition of coatings effectively raises durability of friction pairs to scoring. Advanced coatings have low friction coefficients (0.75 − 0.095) at loadings up to 2.0 kN and have shown high wear resistance. The received results allow to develop software products for obtaining of multicomponent multilayer coatings of required composition using Avinit equipment and tryout stable techniques for deposition of functional coatings to be used in friction parts of precision couples of standard aircraft units. Проведеныметаллографические исследования улучшенной структурымногослойных, на основе нитридов, покрытий Avinit C, в частности, покрытий систем Ti-Al-N и Mo-N. На стадии разработки методов использовались эффективные средства очистки поверхности и трехуровневая система управления дугой для предотвращения повреждения поверхности, вызванного микродугaми. Методы позволяют наносить покрытия высокой точности с финишной чистотой поверхности 12 – 13 класса без снижения качества исходной поверхности. Экспериментальные данные подтверждают возможность низкотемпературного осаждения трудно осаждаемых покрытий Avinit C на основе нитридов металлов в условиях, обеспечивающих хорошую адгезию к основным материалам (сталь DIN 1.2379 (Х12Ф1)) без снижения прочностных свойств стали (< 200 °C) и без искажений покрытием. Трибологические качества предложенных конструкций многокомпонентных многослойных покрытий Avinit под авиационное топливо ТС-1 с целью выбора лакокрасочных материалов для точных трущихся пар деталей машин также рассматриваются в данной работе. Показано, что применение защитных покрытий эффективно повышает долговечность пар трения. Покрытия обладают низким коэффициентом трения (0.075 – 0.095) при нагрузках до 2,0 кН показали высокую износостойкость. Полученные результаты позволяют разрабатывать программные продукты для получения многокомпонентных многослойных покрытий необходимого состава с использованием Avinit оборудования и стабильных функциональных покрытий для использования в точных трущихся парах деталей стандартных модулей самолетов. Проведенометалографічні дослідження поліпшеної структури багатошарових, на основі нітридів, покриттів Avinit C, зокрема, покриттів систем Ti-Al-N і Mo-N. На стадії розробки методів застосовувалися ефективні засоби очищення поверхні і трирівнева система управління дугою для запобігання пошкодження поверхні, викликаного мікродугами. Методи дозволяють наносити покриття високої точності з фінішною чистотою поверхні 12 – 13 класу без зниження якості вихідної поверхні. Експериментальні дані підтверджують можливість низькотемпературного осадження, покриттів Avinit C, які важко осаджуються, на основі нітридів металів в умовах, що забезпечують хорошу адгезію до основних матеріалів (сталь DIN 1.2379 (Х12Ф1)) без зниження міцнісних властивостей сталі (< 200 °C) і без спотворень покриттям. Трибологічні якості запропонованих конструкцій багатокомпонентних багатошарових покриттів Avinit під авіаційне паливо ТС-1 з метою вибору лакофарбових матеріалів для точних пар тертя деталей машин також розглядаються в даній роботі. Показано, що застосування захисних покриттів ефективно підвищує довговічність пар тертя. Покриття характеризуються низьким коефіцієнтом тертя (0.075 – 0.095) при навантаженнях до 2,0 кН і показали високу зносостійкість. Отримані результати дозволяють розробляти програмні продукти для отримання багатокомпонентних багатошарових покриттів необхідного складу з використанням Avinit обладнання і стабільних функціональних покриттів для застосування в точних парах тертя деталей стандартних модулів літаків.
issn 1999-8074
url https://nasplib.isofts.kiev.ua/handle/123456789/99265
citation_txt Experimental research of multicomponent multilayer ion-plasma avinit coatings / A.V. Sagalovych, A.V. Kononykhin, V.V. Popov, V.V. Sagalovych // Физическая инженерия поверхности. — 2013. — Т. 11, № 1. — С. 4–17. — Бібліогр.: 15 назв. — англ.
work_keys_str_mv AT sagalovychav experimentalresearchofmulticomponentmultilayerionplasmaavinitcoatings
AT kononykhinav experimentalresearchofmulticomponentmultilayerionplasmaavinitcoatings
AT popovvv experimentalresearchofmulticomponentmultilayerionplasmaavinitcoatings
AT sagalovychvv experimentalresearchofmulticomponentmultilayerionplasmaavinitcoatings
first_indexed 2025-11-24T23:33:27Z
last_indexed 2025-11-24T23:33:27Z
_version_ 1850500435005145088
fulltext 4 UDC 621.793.7 EXPERIMENTAL RESEARCH OF MULTICOMPONENT MULTILAYER ION-PLASMA AVINIT COATINGS A.V. Sagalovych, A.V. Kononykhin, V.V. Popov, V.V. Sagalovych Scientific technological Corporation “FED” (Kharkov) Ukraine Received 02.02.2013 Metallographic examination of improved structures of Avinit С multilayer nitride-based coatings, par- ticularly coatings of Ti-Al-N system and Mo-N system-based coating have been carried out. Use of effective methods of surface cleaning and three-level arc control system in the techniques under de- velopment for prevention of surface damaging, caused by micro arcs, allows to apply coatings of pre- cision and high finish class surfaces up to 12 – 13 grade of finish without deterioration of surface finish class. The experimental findings confirm a possibility of low-temperature deposition of very hard Avinit С coatings based on nitrides of metals under the conditions providing good adhesion to the parent material (steel DIN 1.2379 (Х12Ф1) without decrease in strength properties of the steel (<200 °C) and without distortion of the coated surfaces. Tribological examination of advanced constructions of multicomponent multilayer Avinit coatings under aviation fuel ТS-1 for the purpose of selection of coating materials for friction parts of precision couples used in aggregate building. Deposition of coatings effectively raises durability of friction pairs to scoring. Advanced coatings have low friction coefficients (0.75 − 0.095) at loadings up to 2.0 kN and have shown high wear resistance. The received results allow to develop software products for obtaining of multicomponent multilayer coatings of required composition using Avinit equipment and tryout stable techniques for deposition of functional coatings to be used in friction parts of precision couples of standard aircraft units. Keywords: Plasma-vacuum deposited multicomponent multilayer, nanolayer coatings; tribology. ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ МНОГОКОМПОНЕНТНЫХ МНОГОСЛОЙНЫХ ИОННО-ПЛАЗМЕННЫХ ПОКРЫТИЙ AVINIT А.В. Сагалович, А.В. Кононихин, В.В. Попов, В.В. Сагалович Проведены металлографические исследования улучшенной структуры многослойных, на основе нитридов, покрытий Avinit C, в частности, покрытий систем Ti-Al-N и Mo-N. На стадии разра- ботки методов использовались эффективные средства очистки поверхности и трехуровневая система управления дугой для предотвращения повреждения поверхности, вызванного микро- дугaми. Методы позволяют наносить покрытия высокой точности с финишной чистотой поверх- ности 12 – 13 класса без снижения качества исходной поверхности. Экспериментальные данные подтверждают возможность низкотемпературного осаждения трудно осаждаемых покрытий Avinit C на основе нитридов металлов в условиях, обеспечивающих хорошую адгезию к основ- ным материалам (сталь DIN 1.2379 (Х12Ф1)) без снижения прочностных свойств стали (< 200 °C) и без искажений покрытием. Трибологические качества предложенных конструкций много- компонентных многослойных покрытий Avinit под авиационное топливо ТС-1 с целью выбора лакокрасочных материалов для точных трущихся пар деталей машин также рассматриваются в данной работе. Показано, что применение защитных покрытий эффективно повышает долго- вечность пар трения. Покрытия обладают низким коэффициентом трения (0.075 – 0.095) при нагрузках до 2,0 кН показали высокую износостойкость. Полученные результаты позволяют разрабатывать программные продукты для получения многокомпонентных многослойных по- крытий необходимого состава с использованием Avinit оборудования и стабильных функцио- нальных покрытий для использования в точных трущихся парах деталей стандартных модулей самолетов. Ключевые слова: вакуумно-плазменное осаждение многокомпонентных, многослойных, нано- слойных покрытий; трибология. ЕКСПЕРИМЕНТАЛЬНЕ ДОСЛІДЖЕННЯ БАГАТОКОМПОНЕНТНИХ БАГАТОШАРОВИХ ІОННО-ПЛАЗМОВИХ ПОКРИТТІВ AVINIT А.В. Сагалович, А.В. Кононихин, В.В. Попов, В.В. Сагалович Проведено металографічні дослідження поліпшеної структури багатошарових, на основі нітридів, покриттів Avinit C, зокрема, покриттів систем Ti-Al-N і Mo-N. На стадії розробки методів за-  A.V. Sagalovych, A.V. Kononykhin, V.V. Popov, V.V. Sagalovych, 2013 5ФІП ФИП PSE, 2013, т. 11, № 1, vol. 11, No. 1 INTRODUCTION Up-to-date research in the field of creating new materials with record characteristics on wear resis- tance, surface roughness, and possibility to work in extreme conditions are related to the development of nanotechnology, which allows to create multicom- ponent compositions with structure elements rang- ing from several hundreds to a few nanometers. Compared with the materials of the same composi- tion and conventional structure, these materials can have several times higher corresponding character- istics of their tribological and other properties. This also applies to coatings, which offer an effective way of increasing the scope of application of certain materials [1 − 7]. The carried out examinations [8, 9] of deposi- tion of functional coatings based on titanium, mo- lybdenum and their compositions with nitrogen us- ing vacuum-plasma deposition methods have dem- onstrated that multicomponent multilayer coatings exhibit higher wear resistance and tribological char- acteristics compared to single-layer coatings based on one composition. The experimental & process equipment developed by the authors is presented in papers [10, 11], i.e. − Avinit installation intended for deposition of multilayer functional coatings al- lowing to implement complex methods of deposi- tion of functional coatings (plasma chemical − CVD, plasma vacuum – PVD (vacuum-arc, magnetron), processes of ion saturation, implantation and treat- ment of surfaces by ions) are united in one techno- logical cycle. Substantial growth of the range of spectrum sources provided by the integrity of used methods allows obtaining coatings practically from any ele- ments and alloys, refractory oxides, carbides, ni- trides, metal-ceramic compositions based on refrac- tory metals and oxides, which largely expands pos- sibilities of making essentially new materials and coatings for assemblies and parts of different uses working in extreme conditions of temperature, ex- posure to corrosive environment, and high mechan- ical loads. When depositing Avinit coatings there is a pos- sibility of transition to nanodimensional range for implementation of controllable formation processes of multicomponent nano- and microstructural coat- ings with the preset characteristics, which is attained due to the performed fundamental reorganization of operation control of all systems of the process equipment on the basis of technology of through op- eration synchronization of ion-stimulated deposition systems and nanodimensional coating diagnostics equipment due to integration into the equipment of new microprocessor systems for power supply, syn- chronization and control of synthesis and diagnostic processes, and development of a complex of meth- ods for technological parameters monitoring during deposition of coatings for object-orientated process control. There appears a possibility to create multilayer structures containing a large number of layers with different chemical composition (metal, nitride, car- bide, oxide, etc.) with thickness ranging from a few to hundreds of nanometers. The structure of layers is provided by the programmed correlated opera- tion modes of plasma sources (both PVD and CVD), working gases and high potential applied to the car- rier material. стосовувалися ефективні засоби очищення поверхні і трирівнева система управління дугою для запобігання пошкодження поверхні, викликаного мікродугами. Методи дозволяють наносити покриття високої точності з фінішною чистотою поверхні 12 – 13 класу без зниження якості вихідної поверхні. Експериментальні дані підтверджують можливість низькотемпературного осадження, покриттів Avinit C, які важко осаджуються, на основі нітридів металів в умовах, що забезпечують хорошу адгезію до основних матеріалів (сталь DIN 1.2379 (Х12Ф1)) без зни- ження міцнісних властивостей сталі (< 200 °C) і без спотворень покриттям. Трибологічні якості запропонованих конструкцій багатокомпонентних багатошарових покриттів Avinit під авіаційне паливо ТС-1 з метою вибору лакофарбових матеріалів для точних пар тертя деталей машин також розглядаються в даній роботі. Показано, що застосування захисних покриттів ефективно підвищує довговічність пар тертя. Покриття характеризуються низьким коефіцієнтом тертя (0.075 – 0.095) при навантаженнях до 2,0 кН і показали високу зносостійкість. Отримані резуль- тати дозволяють розробляти програмні продукти для отримання багатокомпонентних багатоша- рових покриттів необхідного складу з використанням Avinit обладнання і стабільних функціо- нальних покриттів для застосування в точних парах тертя деталей стандартних модулів літаків. Ключові слова: вакуумно-плазмове осадження багатокомпонентних, багатошарових, нано- шарових покриттів; трибологія. A.V. SAGALOVYCH, A.V. KONONYKHIN, V.V. POPOV, V.V. SAGALOVYCH 6 Correct selection of individual materials of lay- ers, deposition methods and optimization of tech- nological parameters create a background for syn- thesis of materials with a complex of unique prop- erties, including exclusively high hardness, strength, chemical stability, low friction coefficient and im- proved wear resistance. The performed renovation of the process equip- ment and the developed software products have permitted to move to a qualitatively new level of further modification and improvement of structures of functional Avinit coatings, stability of technolo- gies and their quality control enhancement while de- positing these coatings for the developed friction couples with possible use in parts of precision fric- tion couples. In the study, results of metallographic and tribo- logical examinations of improved Avinit coatings based on Ti-Al-N and Mo-N systems are presen- ted. Examinations of deposition process of vacuum- arc coatings were carried out with the purpose of determination of optimum process parameters for getting high-quality coatings based on nitrides of metals in the conditions of specific Avinit process equipment. These data are necessary for working out of software products for deposition of functional composite multilayer hardsurfacing coatings in or- der to raise wear resistance of working areas of precision friction couples of parts of aircraft units. RESEARCH TECHNIQUES THE PROCEDURE OF MAKING COATINGS The development of processes for deposition of new functional multilayer composite coatings was per- formed on Avinit vacuum plant [11] created for implementation of complex methods of deposition of coatings (plasma chemical CVD, plasma PVD (vacuum-arc, magnetron), processes of the ionic saturation and treatment of surfaces by ions). Within the frameworks of paper [11] a number of hardware and technological developments (ap- plication of advanced separating devices, improved diagnostic of plasma and gas flows, improved IR measuring (in the infra-red spectrum) of tempera- ture fields in products being coated, improvement of mechanical and electronic systems of protection against micro arcs and upgrading of the cathode assemblies and control system) have been execut- ed, which has permitted to enhance essentially the possibilities of the process equipment and allow deposition of qualitative coatings on precision sur- faces. Avinit coatings are deposited on high finish pre- cision surfaces up to 12 − 13 grades without de- crease in surface finish class. It is attained due to the possibility to use in the technologies under devel- oped effective methods of surface cleaning, and particularly, Ar glow-discharge cleaning, cleaning in a double-stage vacuum-arc reactive discharge and cleaning by metal ions at voltages above the zero- charge point of increase, as well as due to preven- tion of surface damaging by micro arcs; for this pur- pose the three-level arc control system providing high quality of surface cleaning from oxides and other impurities without causing electrical breakdowns is provided in the Avinit plant. Deposition takes place at low temperatures not exceeding the tempering temperature of the carrier material, providing retain- ing of mechanical characteristics and absence of dis- tortion in coated products. For implementation of processes of controlled formation of multicomponent nano and micro multi- layer coatings with controlled composition using plas- ma and plasma-chemical processes, the authors have developed a method of through synchroniza- tion using the computer to control the process of coating deposition. The method provides possibili- ties to control the sources of deposition, puffing of reaction gas and other systems of the plant in the set program and record parameters of the equipment during the whole technological cycle. To obtain multilayer coatings Avinit from hard compositions in Ti-Al-N system a technological two- cathode circuit design was used at simultaneous operation of two sources of deposition, which are placed towards each other, in the environment of reaction gas with the specimen revolving round its axis. For deposition of multilayer coatings resting on a sequence of hard and soft layers (TiN-Ti, MoN- Мо systems), a one-cathode scheme was used with continuous operation of the deposition source and pulsed (periodic) supply of reaction gas; it has been implemented thereby in two versions, with the car- rier rotating around its axis, when the whole surface of the specimen was coated, and without rotation, when one side of the specimen was coated only. EXPERIMENTAL RESEARCH OF MULTICOMPONENT MULTILAYER ION-PLASMA AVINIT COATINGS ФІП ФИП PSE, 2013, т. 11, № 1, vol. 11, No. 1 7ФІП ФИП PSE, 2013, т. 11, № 1, vol. 11, No. 1 Before loading into a vacuum chamber, the car- riers were cleaned from contaminations in a hyper- sonic bath using a washing solution with surface ac- tive agent additives, then flushed by running water and by distilled water and dried by warm air. After fixing of carriers in the vacuum chamber, their sur- faces were additionally wiped using light ether. The vacuum chamber was rarefied to the pressure of (1.3 − 2)⋅10−3 Pa, the vacuum-arc source was swit- ched on and ionic-plasma surface cleaning of carri- ers with gradual magnification of bias potential from 50 − 100 V to 700 − 1000 V was started. The time of the cleaning cycle varied from 3 to 5 minutes, thus, the temperature of the carriers that was deter- mined with the help of the IR pyrometer “Raytek”, reached 200 − 250 °С. This mode of carriers clean- ing provided obtaining of qualitative tightly intercon- nected coatings without chipping and local separa- tion of layers. The potential of vacuum-arc discharge current with molybdenum cathode made 140 − 150 A, and with titanium or aluminum cathode 100 − 110 A re- spectively. During deposition of coatings in the ni- trogen environment its pressure was within (1.3 − 3)⋅10–1 Pa. The coatings are deposited on specimens of ste- el DIN 1.2379 (Х12Ф1) with hardness of 56 ÷ 61 HRC and surfaces precisions used for manufac- turing of parts of various units. For this purpose the working planes of the specimens were machined under the production method to surface finish of 0.016 − 0.021 µm (12 − 13 grade of finish). Photos of specimens with the coatings made of various compositions obtained using to above pro- cess flow sheets are presented in fig. 1, 2. THE PROCEDURE OF METALLOGRAPHIC EXAMINATION Metallographic examination and determination of materials’ parameters (thickness of coatings, even- ness, imperfection and structure of the material) were carried out using microscope ММR-4. Microhard- ness of coatings was tested with the help of micro- hardness gauge PMT-3 at the load of 50 g. Hard- ness of the material was measured using the hard- ness gauge by impressing a diamond point accord- ing to Rockwell method. Roughness of samples before and after deposition of coatings was mea- sured by profilograph-profilometer. Measurements of nanohardness and Young mod- ulus in multilayer and nanolayer Avinit coatings of 1÷ 3 µm thick were made using the nanohardness measuring device manufactured by CSM firm (Swit- zerland) (loading rate 20.00 mH/min, max depth 100.00 nm at the load 0.6 g, processing of results according to Oliver – Pharr model). Examination of chemical identity of surface area of functional coatings was carried out using the meth- od of the secondary ion mass spectrometry (SIMS), electron X-ray microanalysis (EXRM), and raster electron microscopy (REM). Taking chemical iden- tity readings of nanolayers of functional coatings was made with the help of the secondary ion mass spec- trometry (SIMS) method using secondary-emission mass-spectrometer MS 7201М. The maximum pro- filing depth is 5 µm. Ar+ ion beam with the energy of 5 − 7 keV was used for spraying. Examination of functional sections of specimens’ surface was made using raster electron microscopy (REM). Taking readings of spatial distributions of chemical elements was done using electron X-ray microanalysis (EXRM). Metallophysics measurements of the coatings were taken on a raster-type electron microscope JSM T-300. PROCEDURE OF FRICTION AND WEAR BEHAVIOR EXAMINATION Tribological tests of antifriction and wear properties and seizure of samples with coatings were carried out with friction and wear machine 2070 SMT-1 under the “cube”-“roller” test pattern at an incre- mental loading in 1 − 20 MPa loading range ac- cording to the procedures presented in [12]. Tests were carried out under aviation fuel TS-1. To de- fine seizure of surface layers of materials of friction Fig. 1. Multilayer coatings in Ti-Al-N system. а) b) а) b) Fig. 2. Multilayer coatings: a) TiN-Ti; b) MoN-Мо. A.V. SAGALOVYCH, A.V. KONONYKHIN, V.V. POPOV, V.V. SAGALOVYCH 8 pairs there applied loading ranged from Рmin to cri- tical value Рcr at which seizure takes place. During tribological tests values of frictional force Fтр, normal loading N, contact pressure P by which value mechanical losses in tribological systems have been estimated were registered. Friction coefficients were defined as f = Fтр/N. To research tribological behavior of friction pairs with nanocoatings at friction and wear tests under the “cube-roller” test pattern, following samples ha- ve been made. Multilayer coatings (Ti-Al-N system-based) Avinit C/P 310, Avinit C/P 300, Avinit C/P 100, Avinit C/P 320, Avinit C/P 350 were deposited on basic samples-cubes made of steel DIN 1.2379 (Х12Ф1) with hardness 56 ÷ 61 HRC and work- ing planes polished by diamond paste to reach required geometrical parameters (nonflatness − ≤ 0.001 mm, surface roughness − Ra 0.08 µm). Multilayer coatings (Mo-N system-based) Avinit C/P 210 and Avinit C/P 220 were deposited on an effective area of rollers (as counterbodies) made of steel DIN 1.2379 (Х12Ф1) with hardness 56 ÷ 61 HRC polished with paste КТ10/7. EXPERIMENTAL RESULTS Influence of key parameters on changing properties of formed coatings based on nitrides of molybde- num, titanium, and aluminum has been studied. An important parameter is the temperature of coating formation. In many cases it is necessary to retain mechanical properties of the carrier material while depositing coatings, this can be attained using corresponding modes of heat treatment, at this tem- pering temperature does not exceed 180 − 240 °C. It imposes certain restrictions on the temperature of deposition of coatings on such materials. Achieve- ment of sufficient adhesion of coatings at such tem- peratures even for vacuum-arc methods, which are among the best in comparison with other methods, is not always an easy problem and demands careful preparation and selection of modes of plasma pro- cessing of surfaces, especially for processing of pre- cision surfaces, and the subsequent deposition of coatings. This moment is chosen as a fundamental one for development of modes of deposition of coat- ings. The performed examinations proved that during deposition of coatings in various technological modes the extent of uniformity of coating distribution is very sensitive to the parameters of coating deposition. Choosing optimum process parameters, it is possi- ble to form coatings on acute edges and on a spher- ical surface. At the same time, sensitivity of unifor- mity of coating distribution to process conditions calls forth expediency of optimization of the latter during optimization at a stage of process development for deposition of coating on prototype and real prod- ucts. The carried out examinations are taken as a ba- sis for selection temperature and time parameters for obtaining hardsurfacing coatings to increase wear resistance of working areas of precision friction cou- ples, which provides obtaining of coatings with the specified composition. One of the parameters of the multilayer coat- ings, which determine their properties to a large ex- tent, is, certainly, the thickness of a separate layer. During coating formation the necessary thickness of the layer is set by the time of operating a relevant source that implies the knowledge of the growth rate. The coating growth rate generally depends on the deposition source power, the distance from the source to the carrier material, its orientation and position in relation to the axis of the direction dia- gram of the atomic stream of the deposition source, the shape of the direction diagram and the bias po- tential applied to the carrier. The carrier can be fixed, rotate around the fixed axis or make orbiting mo- tion. When depositing coatings a mask was placed on the carrier material surface that partially covered the surface. The thickness of the mask made 0.1mm, and the mask was held tightly to the carrier material surface. Due to this a step was formed on the carri- er material surface, the height of which matched the thickness of the coating. Using the profilogram tak- en on the transitional boundary from the carrier material surface to the coating surface allowed not only to determine its thickness (and growth rate us- ing this value), but to avoid possible discrepancies when comparing values of coating roughness due to noncoincidence of places of their determination on the carrier plane. Tabl. 1 shows the results of the experiments for determining growth rates of various coatings ob- tained both on the fixed carriers and on the carriers having planetary motion. EXPERIMENTAL RESEARCH OF MULTICOMPONENT MULTILAYER ION-PLASMA AVINIT COATINGS ФІП ФИП PSE, 2013, т. 11, № 1, vol. 11, No. 1 9ФІП ФИП PSE, 2013, т. 11, № 1, vol. 11, No. 1 The obtained results coincide with the estimates that can be made by comparison of the value of the full ionic current making nearly 0.1 Id, where Id − the arc current magnitude, and the magnitude of the ionic current at the separator output making nearly 0.01 Id, i.e. approximately 10 times less. It is exact- ly the relation between the values of coatings growth rates obtained without separating devices. To determine radial distribution of coatings growth rate with respect to the axis of the deposi- tion source in the perpendicular plane, the possibil- ity of determining the thickness of optically trans- parent coatings by the quantity of the interference maximums on the sections with variable thickness [13] was used. Coatings based on aluminum nitride, which were formed on the carriers during deposition of coatings of metal targets in the reaction gas medium (nitro- gen), were used as optically transparent coatings. Strips made of iron plate 20 mm wide and 400 mm long were used as carriers. The carriers were placed perpendicularly to the axis of the vacuum-arc source, with a separator placed at the distance of 160 mm and 370 mm from the end part of the separator which the diameter of 190 mm at its outlet. Coatings were deposited at vacuum arc current 120 A. At the ini- tial stage the bias potential 400 V was applied to the carrier material, and its surface was cleaned with- in 30 minutes in glow-discharge plasma at Ar pres- sure equal to 5 Pa. Then Ar supply to the chamber was terminated, the bias potential was read and the chamber was refilled with nitrogen to the pressure of 3⋅10−1 Pa with simultaneous switching of vacu- um-arc discharge. The process of deposition of coating lasted 30 − 45 minutes. During deposition the floating potential was applied to the carrier ma- terial. Distribution curves of coating growth rate depending on the distance to the axis of the source for various conditions of deposition are presented in fig. 3. It is clear from the rate distribution curves that there is a shift of their centre of symmetry with re- gard to the source geometrical axis. In relation to the centre of the vacuum chamber, deviation of a plasma stream is observed towards the attachment flange of the pumping-out system of the installation. Such an asymmetry of radial distribution of velocity also occurred in examinations of unseparated plas- ma stream of the vacuum-arc source [14], i.e. in the present examinations asymmetry of the separated stream is not related to the separator as a structural element of the installation, but is characteristic for this particular structure of the installation. Increasing of focusing coil current up to 0.5 A, preset as optimal for such a separator, not only led to acceleration of coating growth rate at the center approximately by 20%, but slightly reduced inho- mogeneity of its distribution. Thus, coatings growth rate with the use of the separator, depending on the material of the coating and the requirements of its formation can range within several tenths to several micrometers per hour. Basing on the coatings growth rate figures, the data were entered into the program to control Avinit Table 1 Coatings growth rate of various compositions Coating Growth rate, V, мm/hour Remarks Ti 0.25 Planetary motion TiN 0.16 – ″ – Mo 0.2 – ″ – MoN 0.14 – ″ – TiAlN 0.7 TiN 0.9 Fixed position MoN 0.7 – ″ – a) b) Fig. 3. Dependence of growth rate distribution on the dis- tance to the axis of the source for the carriers which are lo- cated at the distance of: a) 160 mm and b) 370 mm from the separator, at different current values of the focusing coil. 0 A – current of the focusing coil; ------ 0.5 A – current of the focusing coil. A.V. SAGALOVYCH, A.V. KONONYKHIN, V.V. POPOV, V.V. SAGALOVYCH 10 installation for several variants of nanosized layer coatings, and particularly for: − Ti-TiN coatings with the recurrence interval 10 nanometers and thickness of individual nano- layers 2 and 8 nanometers, respectively; − Mo-MoN coatings with the recurrence interval 20 nanometers and equal thickness of separate nanolayers; − TiN-AlN coatings with the recurrence interval 12 nanometers and thickness of separate nanolayers equal to 4 and 8 nanometers. The process of formation of the coating starts with the moment of diminution of the bias potential to the value when condensation rate of the coating exceeds the rate of its deposition by the faster ions. The process of Ti-TiN coating deposition lasted 1.5 hours, and Mo-MoN and TiN-AlN coatings − three hours. The Avinit control system provided stable for- mation of nanolayers of the preset composition and thickness during the entire process. At this, the for- mation scheme for both monocomponent nanosized layer constructions from two sources and nanosized layer coatings of Me, Me-MeN, Me1N-Me2N type with the use of plasma chemical reactions of gener- ation of metal nitrides (jet deposition) was imple- mented. During the vacuum-arc discharge, along with highly ionized atomic particle flux, a part of the cath- ode material is transferred towards the coating growth surface in the form of drops. Presence of the drop component in the coating structure is one of the characteristic features of vacuum-arc coat- ings. During formation of nanosized layer coatings and studying the dependence of their characteris- tics from composition and periodicity of the struc- ture, presence of macro particles generated by the cathode spot of the vacuum arc, will considerably reduce characteristics of the formed coatings, es- pecially, during deposition of coatings on precision surfaces. Drops size, flow density and angle distri- bution depend on the operating mode of the source of vacuum-arc deposition and on the cathode ma- terial. It offers an opportunity to influence to a cer- tain extent the value of this component in the gener- al stream of the substance being condensed on the carrier material in the form of the coating. The authors used and improved, with reference to the task of deposition of nanosized layer coatings on precision surfaces, a rectilinear separator of in- sular type as a simple in implementation and, at the same time, effective enough structure [15]. It has a choke and a system of catcher rings made of a hard to melt material that provides reliable protection of the anode against burn-through by the arc spot. The efficiency of the vacuum-arc source with separation of the plasma stream depends on the construction of a separation device, configuration of the magnetic field and its intensity. Therefore ex- periments for optimization of parameters of the sep- arating device installed on the basis of use of the focusing coil of a standard vacuum-arc deposition source were carried out. Position and size of the separator element non- transparent to drops were selected taking into ac- count the requirement of maximum possible cut off of the drops while retaining the sufficient value of the total ionic current at the separator outlet, which was assumed to be a ∅ 250 mm collector. The val- ue of the magnetic field intensity in the plasma dis- tributor depended on the solenoid current, which was selected so that the ionic current at the separa- tor outlet was maximal. Examination of dependence of ionic current value on the bias potential applied to the collector showed that the curve of the ionic current reaches saturation when voltage is about 60 V, and in the subsequent experiments it was con- stant. In the optimal mode selection of optimum cur- rent strength of the focusing coil (about 0.5 A), de- pending on the size and position of the separating is let, maximum value of the full ionic current at the separator outlet, which made 1.2 A at the arc cur- rent 120 A was obtained. As the experimental findings showed, use of such a rectilinear separator ensures formation of plasma streams that are essentially cleaned of cathode ma- terial micro particles, which permits to deposit coat- ings on the surface of V 11 − 13 grade of finish practically without changing the surface finish class. All subsequent experimental and technological de- velopments were made using a rectilinear separat- ing device. Composition and some characteristics on hard- ness, microhardness and surface roughness of the investigated coatings obtained at various process flow sheets, are presented in tabl. 2. All coatings were deposited on samples made of steel DIN 1.2379 (Х12Ф1) with hardness 56 ÷ 61 HRC (Hv = 770 − 800 МРа) and a surface roughness − Ra 0,025 µm. EXPERIMENTAL RESEARCH OF MULTICOMPONENT MULTILAYER ION-PLASMA AVINIT COATINGS ФІП ФИП PSE, 2013, т. 11, № 1, vol. 11, No. 1 11ФІП ФИП PSE, 2013, т. 11, № 1, vol. 11, No. 1 Comparison of carrier material surface rough- ness and coating by their profile diagrams (fig. 4, tabl. 2) shows that after deposition of coatings on samples with surface finish of 12 − 3 grade, the sur- face roughness practically does not change or ex- hibits a slight increase in surface roughness, which Table 2 Properties of samples *) 1 – one-cathode operation scheme with continuous operation of the deposition source in the reaction gas medium with carriers rotating around their axes; 2 – one-cathode operation scheme with continuous operation of the deposition source in the reaction gas medium and without the gas, with carriers rotating around their axes; 3 – two-cathode operation scheme during simultaneous operation of two sources of deposition placed towards each other, in the reaction gas medium with carriers rotating around their axes. Item No. 1 2 1Avinit C/P 100 (TiN) monolayer 250 1.5⋅10−1 1.0 15000 − 19000 0.040 (11с) 3 2 Avinit C/P 110 (TiN) monolayer (A recurrence interval – 10 nm and thick- ness of separate nanolay- ers – 2 nm and 8 nm) 250 1.5⋅10−1 1.0 13000 − 18000 0.036 (12a) 1 1 (witho- ut the se- parator) Avinit C/P 200 (MoN) monolayer 250 1.5⋅10−1 10.0 20000 − 22000 0.60 (8a) 2 1Avinit C/P 200 (MoN) monolayer 250 1.5⋅10−1 1.0 20000 − 23000 0.040 (11с) 3 2 Avinit C/P 210 (Mo- MoN) monolayer (A recurrence interval – 10 nm and thick- ness of separate nanolay- ers – 2 nm and 8 nm) 250 1.5⋅10−1 1.0 17000 − 19000 0.036 (12a) 4 2 Avinit C/P 220 (Mo- MoN) monolayer (A recurrence interval of 20 nm and equal thickness of separate nanolayers) 250 1.5⋅10−1 1.0 18000 − 20000 0.036 (12a) 1 2 3 4 Coating compo- sition Process flow- sheet* Technological parameters Properties of coatings The programmed composition T, °C Pressure of nitrogen, Р, Ра Thickness of a coa- ting, мm Microhardness of coating, Hv, (MPa) Surface roug- hness Ra, мm 1 (witho- ut sepa- rator) Avinit C/P 100 (TiN) monolayer 250 1.5⋅10−1 12.0 15000 − 18000 0.70 (7с) 3 (witho- ut the se- parator) Avinit C/P 300 multilayer 200 3⋅10−1 10.0 26000 − 30000 0.040 (11b) 3 Avinit C/P 310 nanolayer (A recurrence interval – 12 nm and thick- ness of separate nanolay- ers – 4 nm and 8 nm) 200 3⋅10−1 – 26000 − 35000 0.036 (12a) 3 Avinit C/P 320 nanolayer (A recurrence interval – 12 nm and thick- ness of separate nanolay- ers – 8 nm and 4 nm) 200 3⋅10−1 – 26000 − 35000 0.036 (12a) 3 Avinit C/P 350 nanolayer (A recurrence interval – 20 nm and equal thickness of separate nanolayers) 200 3⋅10−1 – 26000 − 35000 0.036 (12a) III System-based coatings Ti-Al-N (TiN-AlN) A.V. SAGALOVYCH, A.V. KONONYKHIN, V.V. POPOV, V.V. SAGALOVYCH I Ti-N system-based coatings II Mo-N system-based coatings 12 practically does not place it in another grade in accordance with the classification by grade surface roughness. As the results of examination of the profile dia- gram show, the quality of the coating surface essen- tially deteriorates without application of a rectilinear separator. A considerable quantity of macro parti- cles (mainly, metal drops) characteristic for conden- sation from unseparated streams of plasma, occurs on the surface of coatings. Roughness of the origi- nal surface (grade 12b) when depositing such coat- ings decreases very strongly (grade 7c, tabl. 2). When depositing coatings based on molybde- num without application of separating devices the coatings’ surface roughness corresponds to V 7 − 8 grade, if deposited on steel DIN 1.2379 (Х12Ф1) surface polished to surface finish class V 12. As one would expect, titanium-based coatings have a somewhat higher roughness when compared to coatings based on molybdenum, which is ac- counted for by higher drop component and larger sizes of drops in comparison with the plasma gen- erated by the arc with molybdenum cathode [14]. The carried out X-ray examinations of Avinit coatings C/P 320 revealed that coatings comprise ∼ 45 at.% of aluminum. Their crystal structure matched TiN structure, with lattice parameter close to values of this composition. According to the X- ray examination, the size of the coherent-scattering region (CSR) in the coating made 32 nm. This value is well consistent with the sizes of separate TiN and AlN nanolayers taking into account the nanolayer growth rate per revolution, which made ∼ 35 nm, that, as a whole, confirms availability of nanolayer structure in accordance with the process flowsheet of coating formation. To determine coating thickness and for visual estimation of quality of Ti-Al-N coating adhesion with the material of the test parts, a metallophy- sics measurement of Avinit coatings was made at a raster-type electronic microscope JSM T-300 (fig. 5, 6). For thickness gauging a traversal static fracture of test parts having coatings was made. The thick- ness of the coating makes ∼ 9 µm. No peeling of the coating from the carrier was revealed at the exam- ined sections. Thickness of thick unfiltered multilayer Avinit coatings C/P 100 and Avinit C/P 220 made 10 ÷ 15 µm, microhardness of coatings − 2000 − 2500 kg/mm2. Thickness of thin multilayers and nanolayers of Avinit coatings C/P 320 and Avinit C/P 210 − 1 ÷ 2 µm. The measured values of hard- ness of Avinit coatings C/P 320 made not less than a) b) Fig. 4. Profile diagram of the carrier with a) Ti-TiN, b) Mo- MoN. coatings. a) Point No. N Al Ti Mo Total % 010 9.10 27.93 62.96 – 100 011 6.89 16.73 76.38 – 100 012 10.7 45.87 43.44 – 100 013 10.71 47.22 42.07 – 100 014 – 3.64 88.94 7.41 100 ×9500 b) Fig. 5. Appearance of Avinit coating C/P 320 (a traversal metallographic sample): a) with marked areas for analysis; b) an approximate chemical composition of the analyzed areas. EXPERIMENTAL RESEARCH OF MULTICOMPONENT MULTILAYER ION-PLASMA AVINIT COATINGS ФІП ФИП PSE, 2013, т. 11, № 1, vol. 11, No. 1 13ФІП ФИП PSE, 2013, т. 11, № 1, vol. 11, No. 1 HV = 3500 kg/mm2, Avinit coatings C/P 210 − not less than HV = 2000 2500 kg/mm2. The taken measurements of nanohardness and Young modulus in 1.4 мm thick Avinit coatings C/P 320 gave the values of НV = 1600 – 2300 kg/mm2, E = 250 − 300 GPa, a Poisson’s ratio K = 0.30 (diagrams of loading and the obtained nanohardness, Young modulus and Poisson’s ratios values are pre- sented in fig. 7а). Similar measurements for Avinit coatings C/P 210 with the thickness 1.0 µm yielded the following results − НV = 1500 – 1800 kg/mm2, E = 200 − 260 GPa, a Poisson’s ratio K = 0.30 (fig. 7b). It should be noted that in Oliver-Pharr model Young moduli of the coating and the carrier are as- sumed to be equal, and thus the computed values can be a little underrated. The performed measurements of nanohardness show that in thin layers of hard and superhard coat- ings, where application of usual methods of testing microhardness by means of microhardness gauge PMT-3 is impossible (coating thickness for obtain- ing of reliable information should be not less than 5 µm), as high values of hardness, as in thick layers IMG15.0 µm ×5500 5.0 µm N K 5.0 µm Ti K 5.0 µm Al K Fig. 6. Appearance of Avinit coating C/P 320 (a traversal metallographic section) in the mode of mapping of the coated section. The higher element content, the more in- tensive coloring. a) b) Fig. 7. Measurement results of nanohardness and Young modulus: a) – Avinit coating C/P 320; b) – Avinit coating C/P 210. A.V. SAGALOVYCH, A.V. KONONYKHIN, V.V. POPOV, V.V. SAGALOVYCH 14 are attainable. This permits to state that many technological developments made by the authors for thick coatings, can be successfully applied to thin coatings of precision surfaces. Metallographic examination of Avinit coatings using methods of secondary ion mass spectrometry (SIMS), electron X-ray micro analyzing (EXRM), raster electron microscopy (REM) were carried out. Functional relationship of currents of secondary ions Al+, Ti+ on the time of deposition and depths of components’ distribution profile for Avinit coating C/P 310 are presented in fig. 8а. Changing of secondary ions current in both ex- periments characterizes change of concentration of respective elements deep into the sample in course of deposition on the near-to-surface area by a beam of primary ions Ar+. It follows from the obtained dependencies that the top surface of the coating has a higher concentration of aluminum, which decreas- es with the depth. Further changes of current inten- sity for Al+ and Ti+ reflect, in fact, the processes which occur during coating deposition and lead to change of concentration of respective components due to the deposition mode. It is also possible that the behavior of these relations can characterize the change of chemical identity of aluminum and titanum compounds in course of formation of coating thick- ness. Similar relations for profiles of aluminum and titanum distribution in the near-to-surface area of the sample with the deposited functional coating Avinit C/P 320 are presented in fig. 8b. Synchro- nous changes of Al+ and Ti+ current intensities from ∼ 1.8 µm depth are related to the technology of coat- ing formation. The carried out examination permitted to opti- mize technological parameters of process of nano- sized layer coatings deposition with higher (or lower) concentration of aluminum in the near-to-sur- face layers. Metallographic examination of samples after dep- osition of coatings of various composition show that the developed modes have provided formation of qualitative coatings. Hardness and microhardness of the carrier material in the selected modes of coat- ings deposition practically do not decrease in com- parison with the original state. Coatings had good adherence with the parent material. Pilling of coat- ings during application of a net of scratches was not observed. Thus, the experimental findings confirm a possi- bility of low-temperature deposition of very hard Avinit С coatings based on nitrides of metals in the modes providing good adhesion to the parent ma- terial ((steel DIN 1.2379 (Х12Ф1) without reduc- ing strength properties of the steel (< 200 °C) and without decreasing surface finish class of the origi- nal surface. RESULTS OF TRIBOLOGICAL TESTS Tribological tests (coating over coating) (under the test pattern “cube-roller”) of multilayer and nano- layer Avinit C/P 320 and Avinit C/P 510с coatings using counterbodies with multilayer Avinit C/P 220 and Avinit C/P 100 coatings (TiN-Ti based) of 10 − 15 µm thickness which are deposited from unfil- tered plasma flows with the subsequent additional polishing. Results are presented in fig. 9. a) b) Fig. 8. Functional relationship of currents of secondary ions Al+, Ti+ on deposition time: a) Avinit coating C/P 310, b) Avinit coating C/P 320. EXPERIMENTAL RESEARCH OF MULTICOMPONENT MULTILAYER ION-PLASMA AVINIT COATINGS ФІП ФИП PSE, 2013, т. 11, № 1, vol. 11, No. 1 15ФІП ФИП PSE, 2013, т. 11, № 1, vol. 11, No. 1 More detailed examination of samples during tri- bological tests was carried out with application of methods on examination of chemical identity of near- to-surface areas of the functional coatings. Fig. 10 represents results of electron X-ray mi- croanalysis (EXRM) for three elements: aluminium, iron and titanum for Avinit C/P 320 sample at its scanning by an electronic beam along width of a ring from its external surface to the internal one. Results are represented in the form of depen- dences of a characteristic X-radiation of atoms of those metals from the electron microprobe location on a surface of the sample (diameter of electron microprobe ∅ = 30 nm, characteristic radiation was registered from a near-to-surface layer of the sample at 1 µm depth). When scanning from larger to smaller diameter, curves begin with peaks of the titanium and the alu- minium intensities caused by characteristic radiation of these metals deposited on an external cylindrical part of the sample. Peak values of Al and Ti cha- racteristic radiation with the same order intensities are also observed on interfaces of side, internal and external cylindrical surfaces of the ring. Al and Ti distributions over all analyzed surface are qualita- tively close to each other. No matter the fact that unaffected functional coat- ing exists, surfaces with such coating already exhibit Fe characteristic radiation which intensity is much less, than from Al and Ti. The form of dependence of a signal on Fe is contrary to form of dependence for Al and Ti. Observable regularity of distribution of metals over a surface of the sample along an an- alyzing line is illustratory. Minimums on distribution curve Fe there match to all maximums on distribu- tion curves for Al and Ti, and vice versa. At the same time, Fe intensity is basic for a surface put to tribo- logical tests. At that, rather wide transitive area (200 − 360 µm) is observed. Sections of a surface of Avinit C/P 320 sample put to tribological tests were examined by means of a secondary ion mass spectrometry (SIMS). Metallophysics measurements carried out pro- vide fuller appreciation of dynamics of wearing pro- cess over a thickness of a coating and more rea- sonable approach to selection of technological pa- rameters for deposition of nanolayer coatings with various thickness. Fig. 9. Dependence of friction coefficient on loading. Fig. 10. Distribution of elements in coating Avinit C/P 320. A.V. SAGALOVYCH, A.V. KONONYKHIN, V.V. POPOV, V.V. SAGALOVYCH 16 Analysis of results of tribological examinations carried out shows, that presence of the developed coatings essentially improves scoring resistance of tribological pairs raising values Рcr of scoring and practically preventing scoring. Coatings on the basis of Avinit C/P 220 which have the highest Рcr values and the lowest values of coefficient of friction are especially effective. This is evidenced by not only increase in load at tests to maximum load, but also variation of dependence of friction coefficients on a load which after some raise with increase in load to 0,6 − 0,8 kN was down- graded to the maximum load of 2 kN. Application of multilayer coatings (for example, Avinit C/P 110 of TiN-Ti type) leads to magnifica- tion of Рcr in comparison with monolayer coatings (for example, Avinit C/P 100 of TiN type). For all types of coatings, friction coefficients have close enough values, and at loadings more than 1.0 kN they are within the range of 0.06 – 0.1. The least friction coefficient is for the pair “coating Avinit C320 – coating Avinit C220”. Value of fric- tion coefficient of the pairs did not exceed 0,095 within all range of loadings, and at the maximum load- ing it made 0,065, that matches to the minimum val- ue obtained in the study for friction pairs a with the examined coatings. All coatings in tests have shown high wear resis- tance. The friction pairs which working faces have mi- cro- and nanolayer Avinit C/P 320, Avinit C/P 350, Avinit C/P 220 coatings, were tested in the condi- tions of a boundary lubrication, are characterized by: − High scoring resistance; − Absence of secondary abradability; − High enough stability over time of friction coeffi- cient in case of operation on an invariable loading. All tested friction pairs with nanocoatings have pronounced running-in period of ≈ 60 min. after which values of friction coefficients are stabilized and, at an invariable loading 1600 N, are within limits 0,09 ÷ 0,132. The friction pair Avinit C/P 220/Avinit C/P 320 has exhibited the most long runningin period before stabilization of friction coefficients values at a steady load in the study. This pair has exhibited the full co- incidence of friction coefficients values of “direct” and “reverse” pairs at the long-term operation un- der an invariable loading. The mass wear revealed after 8 hours of wear tests is less than for “base” pair bronze/nitrided steel DIN 1.2379 (Х12Ф1) (chosen as one of the best actual alternatives for operation of friction pairs in an aviation fuel): 2.7 times less for “direct” pair and 8.1 times less for “reverse” pair. CONCLUSIONS 1. Metallographic examination of improved struc- tures of multilayer Avinit C type nitride coat- ings based on Ti-Al-N system − Avinit C/P 310, Avinit C/P 300, Avinit C/P 100, Avinit C/P 320, Avinit C/P 350 and coatings based on system Mo-N − Avinit C/P 210 and Avinit C/P 220 were made. Avinit coatings are de- posited on precision surfaces of high finish class up to 12 − 13 grades without decrease in sur- face finish class, which is attained by use of ef- fective methods of surface cleaning in the pro- duction engineering being developed, and by prevention of surface deterioration by micro arcs. For this purpose Avinit installation is equipped with a three-level arc control system providing high quality of surface cleaning from oxides and other fouling without occurrence of electrical breakdowns. 2. The experimental findings confirm a possibility of low-temperature deposition of very hard Avinit coatings С based on nitrides of metals in the modes providing good adhesion to parent material (steel DIN 1.2379 (Х12Ф1) without decrease in strength properties of the steel (< 200 °C) and without distortion of coated sur- faces. 3. As tribological tests have shown, deposition of coatings very effectively improves scoring re- sistance leading to raise of value Рcr for scoring. Examined pairs with coatings had low friction coefficients at loadings up to 2.0 kN. Pair Avinit EXPERIMENTAL RESEARCH OF MULTICOMPONENT MULTILAYER ION-PLASMA AVINIT COATINGS ФІП ФИП PSE, 2013, т. 11, № 1, vol. 11, No. 1 Table 4 Values of wear of samples in the course of wearing tests for 8 hours Friction pair Avinit C/Р 220/Avinit C/Р 320 Avinit C/Р 220 Avinit C/Р 320 Wear, g Test time 480 min Σ static movable 0.00091 0.00091 0 movable static 0.00101 0.00087 0.00014 17ФІП ФИП PSE, 2013, т. 11, № 1, vol. 11, No. 1 C/P 320/Avinit C/P 220 had the least friction coefficient. Its value did not exceed 0.095 within all range of loadings, and at the maximum load- ing it made 0.075. During tests, all advanced coatings have shown high wear resistance which value did not exceed 0.8 µm. The pair Avinit C/P 320/Avinit C/P 220 has shown the best combination of wear hardness and tribological properties. It had the least friction coefficient and practically zero wear for 8 hour tests. 4. The carried out examination permitted to choose temperature/time parameters of production of hard surfacing Avinit С coatings to raise wear resistance of working areas of precision friction couples, which is necessary for development of software products for production of such coat- ings with preset composition using Avinit equip- ment and trying out of stable production engi- neering for deposition of functional multicom- ponent multilayer coatings for potential use in real parts of precision friction couples of serial aircraft apparatuses. REFERENCES 1. Veprek S., Reiprich S. Concept for the design of novel super hard coatings//Thin Solid Films. − 1995. − Vol. 268. − P. 64-67. 2. Korotayev A.D., Moshkov V.Yu. et al. Nano- structure and nanocomposite superhard coatings //Physical mezomehanika.− 2005. − Vol. 8, № 5. − P. 103-116. 3. Haurt R., Patscheider J. From alloying to nano- composites - improved performance of hard coat- ings //Advanced Engineering Materials. − 2000. − Vol. 2, № 5. − P. 247-259. 4. Veprek S. The search for novel, superhard mate- rials//J. Vac. Sci. Technol. − 1999. − A 17(5). − Р. 2401-2420. 5. Musil J., Zeman P., Hruby H., Mayrhofer P.H. ZrN/Cu nanocomposite film − a novel superhard material//Surface and Coatings Technology. − 1999. − Vol. 120-121. − Р. 179-18. 6. Sam Zhang, Yongqing Fu, Hejun Du et. al. Mag- netron deposition of nanocomposite (Ti, Cr) CN/DLC coatings//Surface and Coatings Tech- nology. − 2002. − Vol. 162. − P. 42-48. 7. Veprek S., Veprek-Heijman M., Karvankova P., Prochazka J Different approaches to superhard coatings and nanocomposites//Thin Solid Films. − 2005. − Vol. 476. − P. 1-29. 8. Lyubchenko A., Sagalovich A.V., Sagalovich V., et. al. Examination of friction and wear charac- teristics of ionic-plasma coatings produced on aluminum alloy//Physical surface engineering. − 2004. − Vol. 2, № 1-2. − P. 110-114. 9. Popov V.V., Sagalovych A.V., Dudnik S.F. et. al. Development of multicomponent coatings for improvement of wear resistance of friction cou- ples surfaces in precision assemblies//Physical surface engineering. − 2007. − Vol. 5, №3-4. − P. 154-165. 10. Sagalovych A.V., Sagalovych V.V., Dudnik S.F. Automated system of deposition of functional nanosized coatings//Equipment and tools. − 2005. − Vol. 12. − P. 2-3. 11. Sagalovych A.V., Kononykhin A.V., Popov V.V. et. al. Avinit installation for deposition of multi- layer functional coatings//Physical surface engi- neering. − 2010. − Vol. 8. − P. 336-347. 12. Dudnik S.F., Sagalovych А.V., Sagalovych V.V. et. al. Examination of friction and wear proper- ties of the ion-plasma coatings obtained over an aluminium alloy//Physical surface engineering. − 2004. − Vol. 2. − P. 110-114. 13. Valitov A.M., A. Shilov Thickness control instru- ments and methods: Thickness control instru- ments and methods. − L. − 1985. − P. 256. 14. Khoroshikh V.M., Holomeev M.G. Spatial distri- bution of particle fluxes in a stationary low pres- sure arc discharge//Physical surface engineer- ing. − 2004. − Vol. 2, № 1-2. − P. 24-27. 15. Aksenov I.I., Belous V.A., Vasiliev V.V. et. al. A rectilinear separator of carbonic plasma of a vac- uum arc//Issues of atomic science and engineer- ing. − 2002. − № 2. − P. 127-130. A.V. SAGALOVYCH, A.V. KONONYKHIN, V.V. POPOV, V.V. SAGALOVYCH