Experimental research of multicomponent multilayer ion-plasma avinit coatings
Metallographic examination of improved structures of Avinit С multilayer nitride-based coatings, particularly coatings of Ti-Al-N system and Mo-N system-based coating have been carried out. Use of effective methods of surface cleaning and three-level arc control system in the techniques under deve...
Saved in:
| Published in: | Физическая инженерия поверхности |
|---|---|
| Date: | 2013 |
| Main Authors: | , , , |
| Format: | Article |
| Language: | English |
| Published: |
Науковий фізико-технологічний центр МОН та НАН України
2013
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/99265 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Experimental research of multicomponent multilayer ion-plasma avinit coatings / A.V. Sagalovych, A.V. Kononykhin, V.V. Popov, V.V. Sagalovych // Физическая инженерия поверхности. — 2013. — Т. 11, № 1. — С. 4–17. — Бібліогр.: 15 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-99265 |
|---|---|
| record_format |
dspace |
| spelling |
Sagalovych, A.V. Kononykhin, A.V. Popov, V.V. Sagalovych, V.V. 2016-04-25T17:30:59Z 2016-04-25T17:30:59Z 2013 Experimental research of multicomponent multilayer ion-plasma avinit coatings / A.V. Sagalovych, A.V. Kononykhin, V.V. Popov, V.V. Sagalovych // Физическая инженерия поверхности. — 2013. — Т. 11, № 1. — С. 4–17. — Бібліогр.: 15 назв. — англ. 1999-8074 https://nasplib.isofts.kiev.ua/handle/123456789/99265 621.793.7 Metallographic examination of improved structures of Avinit С multilayer nitride-based coatings, particularly coatings of Ti-Al-N system and Mo-N system-based coating have been carried out. Use of effective methods of surface cleaning and three-level arc control system in the techniques under development for prevention of surface damaging, caused by micro arcs, allows to apply coatings of precision and high finish class surfaces up to 12 – 13 grade of finish without deterioration of surface finish class. The experimental findings confirm a possibility of low-temperature deposition of very hard Avinit С coatings based on nitrides of metals under the conditions providing good adhesion to the parent material (steel DIN 1.2379 (Х12Ф1) without decrease in strength properties of the steel (<200 °C) and without distortion of the coated surfaces. Tribological examination of advanced constructions of multicomponent multilayer Avinit coatings under aviation fuel ТS-1 for the purpose of selection of coating materials for friction parts of precision couples used in aggregate building. Deposition of coatings effectively raises durability of friction pairs to scoring. Advanced coatings have low friction coefficients (0.75 − 0.095) at loadings up to 2.0 kN and have shown high wear resistance. The received results allow to develop software products for obtaining of multicomponent multilayer coatings of required composition using Avinit equipment and tryout stable techniques for deposition of functional coatings to be used in friction parts of precision couples of standard aircraft units. Проведеныметаллографические исследования улучшенной структурымногослойных, на основе нитридов, покрытий Avinit C, в частности, покрытий систем Ti-Al-N и Mo-N. На стадии разработки методов использовались эффективные средства очистки поверхности и трехуровневая система управления дугой для предотвращения повреждения поверхности, вызванного микродугaми. Методы позволяют наносить покрытия высокой точности с финишной чистотой поверхности 12 – 13 класса без снижения качества исходной поверхности. Экспериментальные данные подтверждают возможность низкотемпературного осаждения трудно осаждаемых покрытий Avinit C на основе нитридов металлов в условиях, обеспечивающих хорошую адгезию к основным материалам (сталь DIN 1.2379 (Х12Ф1)) без снижения прочностных свойств стали (< 200 °C) и без искажений покрытием. Трибологические качества предложенных конструкций многокомпонентных многослойных покрытий Avinit под авиационное топливо ТС-1 с целью выбора лакокрасочных материалов для точных трущихся пар деталей машин также рассматриваются в данной работе. Показано, что применение защитных покрытий эффективно повышает долговечность пар трения. Покрытия обладают низким коэффициентом трения (0.075 – 0.095) при нагрузках до 2,0 кН показали высокую износостойкость. Полученные результаты позволяют разрабатывать программные продукты для получения многокомпонентных многослойных покрытий необходимого состава с использованием Avinit оборудования и стабильных функциональных покрытий для использования в точных трущихся парах деталей стандартных модулей самолетов. Проведенометалографічні дослідження поліпшеної структури багатошарових, на основі нітридів, покриттів Avinit C, зокрема, покриттів систем Ti-Al-N і Mo-N. На стадії розробки методів застосовувалися ефективні засоби очищення поверхні і трирівнева система управління дугою для запобігання пошкодження поверхні, викликаного мікродугами. Методи дозволяють наносити покриття високої точності з фінішною чистотою поверхні 12 – 13 класу без зниження якості вихідної поверхні. Експериментальні дані підтверджують можливість низькотемпературного осадження, покриттів Avinit C, які важко осаджуються, на основі нітридів металів в умовах, що забезпечують хорошу адгезію до основних матеріалів (сталь DIN 1.2379 (Х12Ф1)) без зниження міцнісних властивостей сталі (< 200 °C) і без спотворень покриттям. Трибологічні якості запропонованих конструкцій багатокомпонентних багатошарових покриттів Avinit під авіаційне паливо ТС-1 з метою вибору лакофарбових матеріалів для точних пар тертя деталей машин також розглядаються в даній роботі. Показано, що застосування захисних покриттів ефективно підвищує довговічність пар тертя. Покриття характеризуються низьким коефіцієнтом тертя (0.075 – 0.095) при навантаженнях до 2,0 кН і показали високу зносостійкість. Отримані результати дозволяють розробляти програмні продукти для отримання багатокомпонентних багатошарових покриттів необхідного складу з використанням Avinit обладнання і стабільних функціональних покриттів для застосування в точних парах тертя деталей стандартних модулів літаків. en Науковий фізико-технологічний центр МОН та НАН України Физическая инженерия поверхности Experimental research of multicomponent multilayer ion-plasma avinit coatings Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Experimental research of multicomponent multilayer ion-plasma avinit coatings |
| spellingShingle |
Experimental research of multicomponent multilayer ion-plasma avinit coatings Sagalovych, A.V. Kononykhin, A.V. Popov, V.V. Sagalovych, V.V. |
| title_short |
Experimental research of multicomponent multilayer ion-plasma avinit coatings |
| title_full |
Experimental research of multicomponent multilayer ion-plasma avinit coatings |
| title_fullStr |
Experimental research of multicomponent multilayer ion-plasma avinit coatings |
| title_full_unstemmed |
Experimental research of multicomponent multilayer ion-plasma avinit coatings |
| title_sort |
experimental research of multicomponent multilayer ion-plasma avinit coatings |
| author |
Sagalovych, A.V. Kononykhin, A.V. Popov, V.V. Sagalovych, V.V. |
| author_facet |
Sagalovych, A.V. Kononykhin, A.V. Popov, V.V. Sagalovych, V.V. |
| publishDate |
2013 |
| language |
English |
| container_title |
Физическая инженерия поверхности |
| publisher |
Науковий фізико-технологічний центр МОН та НАН України |
| format |
Article |
| description |
Metallographic examination of improved structures of Avinit С multilayer nitride-based coatings, particularly
coatings of Ti-Al-N system and Mo-N system-based coating have been carried out. Use of
effective methods of surface cleaning and three-level arc control system in the techniques under development
for prevention of surface damaging, caused by micro arcs, allows to apply coatings of precision
and high finish class surfaces up to 12 – 13 grade of finish without deterioration of surface
finish class. The experimental findings confirm a possibility of low-temperature deposition of very
hard Avinit С coatings based on nitrides of metals under the conditions providing good adhesion to
the parent material (steel DIN 1.2379 (Х12Ф1) without decrease in strength properties of the steel
(<200 °C) and without distortion of the coated surfaces.
Tribological examination of advanced constructions of multicomponent multilayer Avinit coatings
under aviation fuel ТS-1 for the purpose of selection of coating materials for friction parts of precision
couples used in aggregate building. Deposition of coatings effectively raises durability of friction pairs
to scoring. Advanced coatings have low friction coefficients (0.75 − 0.095) at loadings up to 2.0 kN
and have shown high wear resistance.
The received results allow to develop software products for obtaining of multicomponent multilayer
coatings of required composition using Avinit equipment and tryout stable techniques for deposition
of functional coatings to be used in friction parts of precision couples of standard aircraft units.
Проведеныметаллографические исследования улучшенной структурымногослойных, на основе
нитридов, покрытий Avinit C, в частности, покрытий систем Ti-Al-N и Mo-N. На стадии разработки методов использовались эффективные средства очистки поверхности и трехуровневая
система управления дугой для предотвращения повреждения поверхности, вызванного микродугaми. Методы позволяют наносить покрытия высокой точности с финишной чистотой поверхности 12 – 13 класса без снижения качества исходной поверхности. Экспериментальные данные
подтверждают возможность низкотемпературного осаждения трудно осаждаемых покрытий
Avinit C на основе нитридов металлов в условиях, обеспечивающих хорошую адгезию к основным материалам (сталь DIN 1.2379 (Х12Ф1)) без снижения прочностных свойств стали (< 200
°C) и без искажений покрытием. Трибологические качества предложенных конструкций многокомпонентных многослойных покрытий Avinit под авиационное топливо ТС-1 с целью выбора
лакокрасочных материалов для точных трущихся пар деталей машин также рассматриваются
в данной работе. Показано, что применение защитных покрытий эффективно повышает долговечность пар трения. Покрытия обладают низким коэффициентом трения (0.075 – 0.095) при
нагрузках до 2,0 кН показали высокую износостойкость. Полученные результаты позволяют
разрабатывать программные продукты для получения многокомпонентных многослойных покрытий необходимого состава с использованием Avinit оборудования и стабильных функциональных покрытий для использования в точных трущихся парах деталей стандартных модулей
самолетов.
Проведенометалографічні дослідження поліпшеної структури багатошарових, на основі нітридів,
покриттів Avinit C, зокрема, покриттів систем Ti-Al-N і Mo-N. На стадії розробки методів застосовувалися ефективні засоби очищення поверхні і трирівнева система управління дугою
для запобігання пошкодження поверхні, викликаного мікродугами. Методи дозволяють наносити
покриття високої точності з фінішною чистотою поверхні 12 – 13 класу без зниження якості
вихідної поверхні. Експериментальні дані підтверджують можливість низькотемпературного
осадження, покриттів Avinit C, які важко осаджуються, на основі нітридів металів в умовах,
що забезпечують хорошу адгезію до основних матеріалів (сталь DIN 1.2379 (Х12Ф1)) без зниження міцнісних властивостей сталі (< 200 °C) і без спотворень покриттям. Трибологічні якості
запропонованих конструкцій багатокомпонентних багатошарових покриттів Avinit під авіаційне
паливо ТС-1 з метою вибору лакофарбових матеріалів для точних пар тертя деталей машин
також розглядаються в даній роботі. Показано, що застосування захисних покриттів ефективно
підвищує довговічність пар тертя. Покриття характеризуються низьким коефіцієнтом тертя
(0.075 – 0.095) при навантаженнях до 2,0 кН і показали високу зносостійкість. Отримані результати дозволяють розробляти програмні продукти для отримання багатокомпонентних багатошарових покриттів необхідного складу з використанням Avinit обладнання і стабільних функціональних покриттів для застосування в точних парах тертя деталей стандартних модулів літаків.
|
| issn |
1999-8074 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/99265 |
| citation_txt |
Experimental research of multicomponent multilayer ion-plasma avinit coatings / A.V. Sagalovych, A.V. Kononykhin, V.V. Popov, V.V. Sagalovych // Физическая инженерия поверхности. — 2013. — Т. 11, № 1. — С. 4–17. — Бібліогр.: 15 назв. — англ. |
| work_keys_str_mv |
AT sagalovychav experimentalresearchofmulticomponentmultilayerionplasmaavinitcoatings AT kononykhinav experimentalresearchofmulticomponentmultilayerionplasmaavinitcoatings AT popovvv experimentalresearchofmulticomponentmultilayerionplasmaavinitcoatings AT sagalovychvv experimentalresearchofmulticomponentmultilayerionplasmaavinitcoatings |
| first_indexed |
2025-11-24T23:33:27Z |
| last_indexed |
2025-11-24T23:33:27Z |
| _version_ |
1850500435005145088 |
| fulltext |
4
UDC 621.793.7
EXPERIMENTAL RESEARCH OF MULTICOMPONENT MULTILAYER
ION-PLASMA AVINIT COATINGS
A.V. Sagalovych, A.V. Kononykhin, V.V. Popov, V.V. Sagalovych
Scientific technological Corporation “FED” (Kharkov)
Ukraine
Received 02.02.2013
Metallographic examination of improved structures of Avinit С multilayer nitride-based coatings, par-
ticularly coatings of Ti-Al-N system and Mo-N system-based coating have been carried out. Use of
effective methods of surface cleaning and three-level arc control system in the techniques under de-
velopment for prevention of surface damaging, caused by micro arcs, allows to apply coatings of pre-
cision and high finish class surfaces up to 12 – 13 grade of finish without deterioration of surface
finish class. The experimental findings confirm a possibility of low-temperature deposition of very
hard Avinit С coatings based on nitrides of metals under the conditions providing good adhesion to
the parent material (steel DIN 1.2379 (Х12Ф1) without decrease in strength properties of the steel
(<200 °C) and without distortion of the coated surfaces.
Tribological examination of advanced constructions of multicomponent multilayer Avinit coatings
under aviation fuel ТS-1 for the purpose of selection of coating materials for friction parts of precision
couples used in aggregate building. Deposition of coatings effectively raises durability of friction pairs
to scoring. Advanced coatings have low friction coefficients (0.75 − 0.095) at loadings up to 2.0 kN
and have shown high wear resistance.
The received results allow to develop software products for obtaining of multicomponent multilayer
coatings of required composition using Avinit equipment and tryout stable techniques for deposition
of functional coatings to be used in friction parts of precision couples of standard aircraft units.
Keywords: Plasma-vacuum deposited multicomponent multilayer, nanolayer coatings; tribology.
ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ МНОГОКОМПОНЕНТНЫХ
МНОГОСЛОЙНЫХ ИОННО-ПЛАЗМЕННЫХ ПОКРЫТИЙ AVINIT
А.В. Сагалович, А.В. Кононихин, В.В. Попов, В.В. Сагалович
Проведены металлографические исследования улучшенной структуры многослойных, на основе
нитридов, покрытий Avinit C, в частности, покрытий систем Ti-Al-N и Mo-N. На стадии разра-
ботки методов использовались эффективные средства очистки поверхности и трехуровневая
система управления дугой для предотвращения повреждения поверхности, вызванного микро-
дугaми. Методы позволяют наносить покрытия высокой точности с финишной чистотой поверх-
ности 12 – 13 класса без снижения качества исходной поверхности. Экспериментальные данные
подтверждают возможность низкотемпературного осаждения трудно осаждаемых покрытий
Avinit C на основе нитридов металлов в условиях, обеспечивающих хорошую адгезию к основ-
ным материалам (сталь DIN 1.2379 (Х12Ф1)) без снижения прочностных свойств стали (< 200
°C) и без искажений покрытием. Трибологические качества предложенных конструкций много-
компонентных многослойных покрытий Avinit под авиационное топливо ТС-1 с целью выбора
лакокрасочных материалов для точных трущихся пар деталей машин также рассматриваются
в данной работе. Показано, что применение защитных покрытий эффективно повышает долго-
вечность пар трения. Покрытия обладают низким коэффициентом трения (0.075 – 0.095) при
нагрузках до 2,0 кН показали высокую износостойкость. Полученные результаты позволяют
разрабатывать программные продукты для получения многокомпонентных многослойных по-
крытий необходимого состава с использованием Avinit оборудования и стабильных функцио-
нальных покрытий для использования в точных трущихся парах деталей стандартных модулей
самолетов.
Ключевые слова: вакуумно-плазменное осаждение многокомпонентных, многослойных, нано-
слойных покрытий; трибология.
ЕКСПЕРИМЕНТАЛЬНЕ ДОСЛІДЖЕННЯ БАГАТОКОМПОНЕНТНИХ
БАГАТОШАРОВИХ ІОННО-ПЛАЗМОВИХ ПОКРИТТІВ AVINIT
А.В. Сагалович, А.В. Кононихин, В.В. Попов, В.В. Сагалович
Проведено металографічні дослідження поліпшеної структури багатошарових, на основі нітридів,
покриттів Avinit C, зокрема, покриттів систем Ti-Al-N і Mo-N. На стадії розробки методів за-
A.V. Sagalovych, A.V. Kononykhin, V.V. Popov, V.V. Sagalovych, 2013
5ФІП ФИП PSE, 2013, т. 11, № 1, vol. 11, No. 1
INTRODUCTION
Up-to-date research in the field of creating new
materials with record characteristics on wear resis-
tance, surface roughness, and possibility to work in
extreme conditions are related to the development
of nanotechnology, which allows to create multicom-
ponent compositions with structure elements rang-
ing from several hundreds to a few nanometers.
Compared with the materials of the same composi-
tion and conventional structure, these materials can
have several times higher corresponding character-
istics of their tribological and other properties. This
also applies to coatings, which offer an effective way
of increasing the scope of application of certain
materials [1 − 7].
The carried out examinations [8, 9] of deposi-
tion of functional coatings based on titanium, mo-
lybdenum and their compositions with nitrogen us-
ing vacuum-plasma deposition methods have dem-
onstrated that multicomponent multilayer coatings
exhibit higher wear resistance and tribological char-
acteristics compared to single-layer coatings based
on one composition. The experimental & process
equipment developed by the authors is presented in
papers [10, 11], i.e. − Avinit installation intended
for deposition of multilayer functional coatings al-
lowing to implement complex methods of deposi-
tion of functional coatings (plasma chemical − CVD,
plasma vacuum – PVD (vacuum-arc, magnetron),
processes of ion saturation, implantation and treat-
ment of surfaces by ions) are united in one techno-
logical cycle.
Substantial growth of the range of spectrum
sources provided by the integrity of used methods
allows obtaining coatings practically from any ele-
ments and alloys, refractory oxides, carbides, ni-
trides, metal-ceramic compositions based on refrac-
tory metals and oxides, which largely expands pos-
sibilities of making essentially new materials and
coatings for assemblies and parts of different uses
working in extreme conditions of temperature, ex-
posure to corrosive environment, and high mechan-
ical loads.
When depositing Avinit coatings there is a pos-
sibility of transition to nanodimensional range for
implementation of controllable formation processes
of multicomponent nano- and microstructural coat-
ings with the preset characteristics, which is attained
due to the performed fundamental reorganization of
operation control of all systems of the process
equipment on the basis of technology of through op-
eration synchronization of ion-stimulated deposition
systems and nanodimensional coating diagnostics
equipment due to integration into the equipment of
new microprocessor systems for power supply, syn-
chronization and control of synthesis and diagnostic
processes, and development of a complex of meth-
ods for technological parameters monitoring during
deposition of coatings for object-orientated process
control.
There appears a possibility to create multilayer
structures containing a large number of layers with
different chemical composition (metal, nitride, car-
bide, oxide, etc.) with thickness ranging from a few
to hundreds of nanometers. The structure of layers
is provided by the programmed correlated opera-
tion modes of plasma sources (both PVD and CVD),
working gases and high potential applied to the car-
rier material.
стосовувалися ефективні засоби очищення поверхні і трирівнева система управління дугою
для запобігання пошкодження поверхні, викликаного мікродугами. Методи дозволяють наносити
покриття високої точності з фінішною чистотою поверхні 12 – 13 класу без зниження якості
вихідної поверхні. Експериментальні дані підтверджують можливість низькотемпературного
осадження, покриттів Avinit C, які важко осаджуються, на основі нітридів металів в умовах,
що забезпечують хорошу адгезію до основних матеріалів (сталь DIN 1.2379 (Х12Ф1)) без зни-
ження міцнісних властивостей сталі (< 200 °C) і без спотворень покриттям. Трибологічні якості
запропонованих конструкцій багатокомпонентних багатошарових покриттів Avinit під авіаційне
паливо ТС-1 з метою вибору лакофарбових матеріалів для точних пар тертя деталей машин
також розглядаються в даній роботі. Показано, що застосування захисних покриттів ефективно
підвищує довговічність пар тертя. Покриття характеризуються низьким коефіцієнтом тертя
(0.075 – 0.095) при навантаженнях до 2,0 кН і показали високу зносостійкість. Отримані резуль-
тати дозволяють розробляти програмні продукти для отримання багатокомпонентних багатоша-
рових покриттів необхідного складу з використанням Avinit обладнання і стабільних функціо-
нальних покриттів для застосування в точних парах тертя деталей стандартних модулів літаків.
Ключові слова: вакуумно-плазмове осадження багатокомпонентних, багатошарових, нано-
шарових покриттів; трибологія.
A.V. SAGALOVYCH, A.V. KONONYKHIN, V.V. POPOV, V.V. SAGALOVYCH
6
Correct selection of individual materials of lay-
ers, deposition methods and optimization of tech-
nological parameters create a background for syn-
thesis of materials with a complex of unique prop-
erties, including exclusively high hardness, strength,
chemical stability, low friction coefficient and im-
proved wear resistance.
The performed renovation of the process equip-
ment and the developed software products have
permitted to move to a qualitatively new level of
further modification and improvement of structures
of functional Avinit coatings, stability of technolo-
gies and their quality control enhancement while de-
positing these coatings for the developed friction
couples with possible use in parts of precision fric-
tion couples.
In the study, results of metallographic and tribo-
logical examinations of improved Avinit coatings
based on Ti-Al-N and Mo-N systems are presen-
ted.
Examinations of deposition process of vacuum-
arc coatings were carried out with the purpose of
determination of optimum process parameters for
getting high-quality coatings based on nitrides of
metals in the conditions of specific Avinit process
equipment. These data are necessary for working
out of software products for deposition of functional
composite multilayer hardsurfacing coatings in or-
der to raise wear resistance of working areas of
precision friction couples of parts of aircraft units.
RESEARCH TECHNIQUES
THE PROCEDURE OF MAKING
COATINGS
The development of processes for deposition of new
functional multilayer composite coatings was per-
formed on Avinit vacuum plant [11] created for
implementation of complex methods of deposition
of coatings (plasma chemical CVD, plasma PVD
(vacuum-arc, magnetron), processes of the ionic
saturation and treatment of surfaces by ions).
Within the frameworks of paper [11] a number
of hardware and technological developments (ap-
plication of advanced separating devices, improved
diagnostic of plasma and gas flows, improved IR
measuring (in the infra-red spectrum) of tempera-
ture fields in products being coated, improvement
of mechanical and electronic systems of protection
against micro arcs and upgrading of the cathode
assemblies and control system) have been execut-
ed, which has permitted to enhance essentially the
possibilities of the process equipment and allow
deposition of qualitative coatings on precision sur-
faces.
Avinit coatings are deposited on high finish pre-
cision surfaces up to 12 − 13 grades without de-
crease in surface finish class. It is attained due to the
possibility to use in the technologies under devel-
oped effective methods of surface cleaning, and
particularly, Ar glow-discharge cleaning, cleaning in
a double-stage vacuum-arc reactive discharge and
cleaning by metal ions at voltages above the zero-
charge point of increase, as well as due to preven-
tion of surface damaging by micro arcs; for this pur-
pose the three-level arc control system providing
high quality of surface cleaning from oxides and other
impurities without causing electrical breakdowns is
provided in the Avinit plant. Deposition takes place
at low temperatures not exceeding the tempering
temperature of the carrier material, providing retain-
ing of mechanical characteristics and absence of dis-
tortion in coated products.
For implementation of processes of controlled
formation of multicomponent nano and micro multi-
layer coatings with controlled composition using plas-
ma and plasma-chemical processes, the authors
have developed a method of through synchroniza-
tion using the computer to control the process of
coating deposition. The method provides possibili-
ties to control the sources of deposition, puffing of
reaction gas and other systems of the plant in the set
program and record parameters of the equipment
during the whole technological cycle.
To obtain multilayer coatings Avinit from hard
compositions in Ti-Al-N system a technological two-
cathode circuit design was used at simultaneous
operation of two sources of deposition, which are
placed towards each other, in the environment of
reaction gas with the specimen revolving round its
axis.
For deposition of multilayer coatings resting on a
sequence of hard and soft layers (TiN-Ti, MoN-
Мо systems), a one-cathode scheme was used with
continuous operation of the deposition source and
pulsed (periodic) supply of reaction gas; it has been
implemented thereby in two versions, with the car-
rier rotating around its axis, when the whole surface
of the specimen was coated, and without rotation,
when one side of the specimen was coated only.
EXPERIMENTAL RESEARCH OF MULTICOMPONENT MULTILAYER ION-PLASMA AVINIT COATINGS
ФІП ФИП PSE, 2013, т. 11, № 1, vol. 11, No. 1
7ФІП ФИП PSE, 2013, т. 11, № 1, vol. 11, No. 1
Before loading into a vacuum chamber, the car-
riers were cleaned from contaminations in a hyper-
sonic bath using a washing solution with surface ac-
tive agent additives, then flushed by running water
and by distilled water and dried by warm air. After
fixing of carriers in the vacuum chamber, their sur-
faces were additionally wiped using light ether. The
vacuum chamber was rarefied to the pressure of
(1.3 − 2)⋅10−3 Pa, the vacuum-arc source was swit-
ched on and ionic-plasma surface cleaning of carri-
ers with gradual magnification of bias potential from
50 − 100 V to 700 − 1000 V was started. The time
of the cleaning cycle varied from 3 to 5 minutes,
thus, the temperature of the carriers that was deter-
mined with the help of the IR pyrometer “Raytek”,
reached 200 − 250 °С. This mode of carriers clean-
ing provided obtaining of qualitative tightly intercon-
nected coatings without chipping and local separa-
tion of layers.
The potential of vacuum-arc discharge current
with molybdenum cathode made 140 − 150 A, and
with titanium or aluminum cathode 100 − 110 A re-
spectively. During deposition of coatings in the ni-
trogen environment its pressure was within (1.3 −
3)⋅10–1 Pa.
The coatings are deposited on specimens of ste-
el DIN 1.2379 (Х12Ф1) with hardness of 56 ÷
61 HRC and surfaces precisions used for manufac-
turing of parts of various units. For this purpose the
working planes of the specimens were machined
under the production method to surface finish of
0.016 − 0.021 µm (12 − 13 grade of finish).
Photos of specimens with the coatings made of
various compositions obtained using to above pro-
cess flow sheets are presented in fig. 1, 2.
THE PROCEDURE OF
METALLOGRAPHIC EXAMINATION
Metallographic examination and determination of
materials’ parameters (thickness of coatings, even-
ness, imperfection and structure of the material) were
carried out using microscope ММR-4. Microhard-
ness of coatings was tested with the help of micro-
hardness gauge PMT-3 at the load of 50 g. Hard-
ness of the material was measured using the hard-
ness gauge by impressing a diamond point accord-
ing to Rockwell method. Roughness of samples
before and after deposition of coatings was mea-
sured by profilograph-profilometer.
Measurements of nanohardness and Young mod-
ulus in multilayer and nanolayer Avinit coatings of
1÷ 3 µm thick were made using the nanohardness
measuring device manufactured by CSM firm (Swit-
zerland) (loading rate 20.00 mH/min, max depth
100.00 nm at the load 0.6 g, processing of results
according to Oliver – Pharr model).
Examination of chemical identity of surface area
of functional coatings was carried out using the meth-
od of the secondary ion mass spectrometry (SIMS),
electron X-ray microanalysis (EXRM), and raster
electron microscopy (REM). Taking chemical iden-
tity readings of nanolayers of functional coatings was
made with the help of the secondary ion mass spec-
trometry (SIMS) method using secondary-emission
mass-spectrometer MS 7201М. The maximum pro-
filing depth is 5 µm. Ar+ ion beam with the energy of
5 − 7 keV was used for spraying. Examination of
functional sections of specimens’ surface was made
using raster electron microscopy (REM). Taking
readings of spatial distributions of chemical elements
was done using electron X-ray microanalysis
(EXRM).
Metallophysics measurements of the coatings
were taken on a raster-type electron microscope
JSM T-300.
PROCEDURE OF FRICTION AND WEAR
BEHAVIOR EXAMINATION
Tribological tests of antifriction and wear properties
and seizure of samples with coatings were carried
out with friction and wear machine 2070 SMT-1
under the “cube”-“roller” test pattern at an incre-
mental loading in 1 − 20 MPa loading range ac-
cording to the procedures presented in [12]. Tests
were carried out under aviation fuel TS-1. To de-
fine seizure of surface layers of materials of friction
Fig. 1. Multilayer coatings in Ti-Al-N system.
а) b)
а) b)
Fig. 2. Multilayer coatings: a) TiN-Ti; b) MoN-Мо.
A.V. SAGALOVYCH, A.V. KONONYKHIN, V.V. POPOV, V.V. SAGALOVYCH
8
pairs there applied loading ranged from Рmin to cri-
tical value Рcr at which seizure takes place.
During tribological tests values of frictional force
Fтр, normal loading N, contact pressure P by which
value mechanical losses in tribological systems have
been estimated were registered. Friction coefficients
were defined as f = Fтр/N.
To research tribological behavior of friction pairs
with nanocoatings at friction and wear tests under
the “cube-roller” test pattern, following samples ha-
ve been made.
Multilayer coatings (Ti-Al-N system-based)
Avinit C/P 310, Avinit C/P 300, Avinit C/P 100,
Avinit C/P 320, Avinit C/P 350 were deposited
on basic samples-cubes made of steel DIN 1.2379
(Х12Ф1) with hardness 56 ÷ 61 HRC and work-
ing planes polished by diamond paste to reach
required geometrical parameters (nonflatness −
≤ 0.001 mm, surface roughness − Ra 0.08 µm).
Multilayer coatings (Mo-N system-based) Avinit
C/P 210 and Avinit C/P 220 were deposited on an
effective area of rollers (as counterbodies) made of
steel DIN 1.2379 (Х12Ф1) with hardness 56 ÷
61 HRC polished with paste КТ10/7.
EXPERIMENTAL RESULTS
Influence of key parameters on changing properties
of formed coatings based on nitrides of molybde-
num, titanium, and aluminum has been studied.
An important parameter is the temperature of
coating formation. In many cases it is necessary to
retain mechanical properties of the carrier material
while depositing coatings, this can be attained using
corresponding modes of heat treatment, at this tem-
pering temperature does not exceed 180 − 240 °C.
It imposes certain restrictions on the temperature of
deposition of coatings on such materials. Achieve-
ment of sufficient adhesion of coatings at such tem-
peratures even for vacuum-arc methods, which are
among the best in comparison with other methods,
is not always an easy problem and demands careful
preparation and selection of modes of plasma pro-
cessing of surfaces, especially for processing of pre-
cision surfaces, and the subsequent deposition of
coatings. This moment is chosen as a fundamental
one for development of modes of deposition of coat-
ings.
The performed examinations proved that during
deposition of coatings in various technological modes
the extent of uniformity of coating distribution is very
sensitive to the parameters of coating deposition.
Choosing optimum process parameters, it is possi-
ble to form coatings on acute edges and on a spher-
ical surface. At the same time, sensitivity of unifor-
mity of coating distribution to process conditions calls
forth expediency of optimization of the latter during
optimization at a stage of process development for
deposition of coating on prototype and real prod-
ucts.
The carried out examinations are taken as a ba-
sis for selection temperature and time parameters
for obtaining hardsurfacing coatings to increase wear
resistance of working areas of precision friction cou-
ples, which provides obtaining of coatings with the
specified composition.
One of the parameters of the multilayer coat-
ings, which determine their properties to a large ex-
tent, is, certainly, the thickness of a separate layer.
During coating formation the necessary thickness of
the layer is set by the time of operating a relevant
source that implies the knowledge of the growth rate.
The coating growth rate generally depends on the
deposition source power, the distance from the
source to the carrier material, its orientation and
position in relation to the axis of the direction dia-
gram of the atomic stream of the deposition source,
the shape of the direction diagram and the bias po-
tential applied to the carrier. The carrier can be fixed,
rotate around the fixed axis or make orbiting mo-
tion.
When depositing coatings a mask was placed
on the carrier material surface that partially covered
the surface. The thickness of the mask made 0.1mm,
and the mask was held tightly to the carrier material
surface. Due to this a step was formed on the carri-
er material surface, the height of which matched the
thickness of the coating. Using the profilogram tak-
en on the transitional boundary from the carrier
material surface to the coating surface allowed not
only to determine its thickness (and growth rate us-
ing this value), but to avoid possible discrepancies
when comparing values of coating roughness due to
noncoincidence of places of their determination on
the carrier plane.
Tabl. 1 shows the results of the experiments for
determining growth rates of various coatings ob-
tained both on the fixed carriers and on the carriers
having planetary motion.
EXPERIMENTAL RESEARCH OF MULTICOMPONENT MULTILAYER ION-PLASMA AVINIT COATINGS
ФІП ФИП PSE, 2013, т. 11, № 1, vol. 11, No. 1
9ФІП ФИП PSE, 2013, т. 11, № 1, vol. 11, No. 1
The obtained results coincide with the estimates
that can be made by comparison of the value of the
full ionic current making nearly 0.1 Id, where Id −
the arc current magnitude, and the magnitude of the
ionic current at the separator output making nearly
0.01 Id, i.e. approximately 10 times less. It is exact-
ly the relation between the values of coatings growth
rates obtained without separating devices.
To determine radial distribution of coatings
growth rate with respect to the axis of the deposi-
tion source in the perpendicular plane, the possibil-
ity of determining the thickness of optically trans-
parent coatings by the quantity of the interference
maximums on the sections with variable thickness
[13] was used.
Coatings based on aluminum nitride, which were
formed on the carriers during deposition of coatings
of metal targets in the reaction gas medium (nitro-
gen), were used as optically transparent coatings.
Strips made of iron plate 20 mm wide and 400 mm
long were used as carriers. The carriers were placed
perpendicularly to the axis of the vacuum-arc source,
with a separator placed at the distance of 160 mm
and 370 mm from the end part of the separator which
the diameter of 190 mm at its outlet. Coatings were
deposited at vacuum arc current 120 A. At the ini-
tial stage the bias potential 400 V was applied to
the carrier material, and its surface was cleaned with-
in 30 minutes in glow-discharge plasma at Ar pres-
sure equal to 5 Pa. Then Ar supply to the chamber
was terminated, the bias potential was read and the
chamber was refilled with nitrogen to the pressure
of 3⋅10−1 Pa with simultaneous switching of vacu-
um-arc discharge. The process of deposition of
coating lasted 30 − 45 minutes. During deposition
the floating potential was applied to the carrier ma-
terial. Distribution curves of coating growth rate
depending on the distance to the axis of the source
for various conditions of deposition are presented
in fig. 3.
It is clear from the rate distribution curves that
there is a shift of their centre of symmetry with re-
gard to the source geometrical axis. In relation to
the centre of the vacuum chamber, deviation of a
plasma stream is observed towards the attachment
flange of the pumping-out system of the installation.
Such an asymmetry of radial distribution of velocity
also occurred in examinations of unseparated plas-
ma stream of the vacuum-arc source [14], i.e. in the
present examinations asymmetry of the separated
stream is not related to the separator as a structural
element of the installation, but is characteristic for
this particular structure of the installation.
Increasing of focusing coil current up to 0.5 A,
preset as optimal for such a separator, not only led
to acceleration of coating growth rate at the center
approximately by 20%, but slightly reduced inho-
mogeneity of its distribution. Thus, coatings growth
rate with the use of the separator, depending on the
material of the coating and the requirements of its
formation can range within several tenths to several
micrometers per hour.
Basing on the coatings growth rate figures, the
data were entered into the program to control Avinit
Table 1
Coatings growth rate of various compositions
Coating Growth rate, V,
мm/hour
Remarks
Ti 0.25 Planetary motion
TiN 0.16 – ″ –
Mo 0.2 – ″ –
MoN 0.14 – ″ –
TiAlN 0.7
TiN 0.9 Fixed position
MoN 0.7 – ″ –
a)
b)
Fig. 3. Dependence of growth rate distribution on the dis-
tance to the axis of the source for the carriers which are lo-
cated at the distance of: a) 160 mm and b) 370 mm from the
separator, at different current values of the focusing coil.
0 A – current of the
focusing coil;
------ 0.5 A – current of the
focusing coil.
A.V. SAGALOVYCH, A.V. KONONYKHIN, V.V. POPOV, V.V. SAGALOVYCH
10
installation for several variants of nanosized layer
coatings, and particularly for:
− Ti-TiN coatings with the recurrence interval
10 nanometers and thickness of individual nano-
layers 2 and 8 nanometers, respectively;
− Mo-MoN coatings with the recurrence interval
20 nanometers and equal thickness of separate
nanolayers;
− TiN-AlN coatings with the recurrence interval
12 nanometers and thickness of separate nanolayers
equal to 4 and 8 nanometers.
The process of formation of the coating starts
with the moment of diminution of the bias potential
to the value when condensation rate of the coating
exceeds the rate of its deposition by the faster ions.
The process of Ti-TiN coating deposition lasted
1.5 hours, and Mo-MoN and TiN-AlN coatings −
three hours.
The Avinit control system provided stable for-
mation of nanolayers of the preset composition and
thickness during the entire process. At this, the for-
mation scheme for both monocomponent nanosized
layer constructions from two sources and nanosized
layer coatings of Me, Me-MeN, Me1N-Me2N type
with the use of plasma chemical reactions of gener-
ation of metal nitrides (jet deposition) was imple-
mented.
During the vacuum-arc discharge, along with
highly ionized atomic particle flux, a part of the cath-
ode material is transferred towards the coating
growth surface in the form of drops. Presence of
the drop component in the coating structure is one
of the characteristic features of vacuum-arc coat-
ings. During formation of nanosized layer coatings
and studying the dependence of their characteris-
tics from composition and periodicity of the struc-
ture, presence of macro particles generated by the
cathode spot of the vacuum arc, will considerably
reduce characteristics of the formed coatings, es-
pecially, during deposition of coatings on precision
surfaces. Drops size, flow density and angle distri-
bution depend on the operating mode of the source
of vacuum-arc deposition and on the cathode ma-
terial. It offers an opportunity to influence to a cer-
tain extent the value of this component in the gener-
al stream of the substance being condensed on the
carrier material in the form of the coating.
The authors used and improved, with reference
to the task of deposition of nanosized layer coatings
on precision surfaces, a rectilinear separator of in-
sular type as a simple in implementation and, at the
same time, effective enough structure [15]. It has a
choke and a system of catcher rings made of a hard
to melt material that provides reliable protection of
the anode against burn-through by the arc spot.
The efficiency of the vacuum-arc source with
separation of the plasma stream depends on the
construction of a separation device, configuration
of the magnetic field and its intensity. Therefore ex-
periments for optimization of parameters of the sep-
arating device installed on the basis of use of the
focusing coil of a standard vacuum-arc deposition
source were carried out.
Position and size of the separator element non-
transparent to drops were selected taking into ac-
count the requirement of maximum possible cut off
of the drops while retaining the sufficient value of
the total ionic current at the separator outlet, which
was assumed to be a ∅ 250 mm collector. The val-
ue of the magnetic field intensity in the plasma dis-
tributor depended on the solenoid current, which
was selected so that the ionic current at the separa-
tor outlet was maximal. Examination of dependence
of ionic current value on the bias potential applied
to the collector showed that the curve of the ionic
current reaches saturation when voltage is about
60 V, and in the subsequent experiments it was con-
stant.
In the optimal mode selection of optimum cur-
rent strength of the focusing coil (about 0.5 A), de-
pending on the size and position of the separating
is let, maximum value of the full ionic current at the
separator outlet, which made 1.2 A at the arc cur-
rent 120 A was obtained.
As the experimental findings showed, use of such
a rectilinear separator ensures formation of plasma
streams that are essentially cleaned of cathode ma-
terial micro particles, which permits to deposit coat-
ings on the surface of V 11 − 13 grade of finish
practically without changing the surface finish class.
All subsequent experimental and technological de-
velopments were made using a rectilinear separat-
ing device.
Composition and some characteristics on hard-
ness, microhardness and surface roughness of the
investigated coatings obtained at various process
flow sheets, are presented in tabl. 2.
All coatings were deposited on samples made
of steel DIN 1.2379 (Х12Ф1) with hardness 56 ÷
61 HRC (Hv = 770 − 800 МРа) and a surface
roughness − Ra 0,025 µm.
EXPERIMENTAL RESEARCH OF MULTICOMPONENT MULTILAYER ION-PLASMA AVINIT COATINGS
ФІП ФИП PSE, 2013, т. 11, № 1, vol. 11, No. 1
11ФІП ФИП PSE, 2013, т. 11, № 1, vol. 11, No. 1
Comparison of carrier material surface rough-
ness and coating by their profile diagrams (fig. 4,
tabl. 2) shows that after deposition of coatings on
samples with surface finish of 12 − 3 grade, the sur-
face roughness practically does not change or ex-
hibits a slight increase in surface roughness, which
Table 2
Properties of samples
*) 1 – one-cathode operation scheme with continuous operation of the deposition source in the reaction gas medium
with carriers rotating around their axes; 2 – one-cathode operation scheme with continuous operation of the deposition
source in the reaction gas medium and without the gas, with carriers rotating around their axes; 3 – two-cathode
operation scheme during simultaneous operation of two sources of deposition placed towards each other, in the
reaction gas medium with carriers rotating around their axes.
Item
No.
1
2
1Avinit
C/P 100
(TiN)
monolayer 250 1.5⋅10−1 1.0 15000 − 19000 0.040 (11с)
3 2
Avinit
C/P 110
(TiN)
monolayer (A recurrence
interval – 10 nm and thick-
ness of separate nanolay-
ers – 2 nm and 8 nm)
250 1.5⋅10−1 1.0 13000 − 18000 0.036 (12a)
1
1 (witho-
ut the se-
parator)
Avinit
C/P 200
(MoN)
monolayer 250 1.5⋅10−1 10.0 20000 − 22000 0.60 (8a)
2
1Avinit
C/P 200
(MoN)
monolayer 250 1.5⋅10−1 1.0 20000 − 23000 0.040 (11с)
3 2
Avinit
C/P 210
(Mo-
MoN)
monolayer (A recurrence
interval – 10 nm and thick-
ness of separate nanolay-
ers – 2 nm and 8 nm)
250 1.5⋅10−1 1.0 17000 − 19000 0.036 (12a)
4 2
Avinit
C/P 220
(Mo-
MoN)
monolayer (A recurrence
interval of 20 nm and equal
thickness of separate
nanolayers)
250 1.5⋅10−1 1.0 18000 − 20000 0.036 (12a)
1
2
3
4
Coating
compo-
sition
Process
flow-
sheet*
Technological parameters Properties of coatings
The programmed
composition T, °C
Pressure of
nitrogen, Р,
Ра
Thickness
of a coa-
ting, мm
Microhardness
of coating, Hv,
(MPa)
Surface roug-
hness Ra, мm
1 (witho-
ut sepa-
rator)
Avinit
C/P 100
(TiN)
monolayer 250 1.5⋅10−1 12.0 15000 − 18000 0.70 (7с)
3 (witho-
ut the se-
parator)
Avinit
C/P
300
multilayer 200 3⋅10−1 10.0 26000 − 30000 0.040 (11b)
3
Avinit
C/P
310
nanolayer (A recurrence
interval – 12 nm and thick-
ness of separate nanolay-
ers – 4 nm and 8 nm)
200 3⋅10−1 – 26000 − 35000 0.036 (12a)
3
Avinit
C/P
320
nanolayer (A recurrence
interval – 12 nm and thick-
ness of separate nanolay-
ers – 8 nm and 4 nm)
200 3⋅10−1 – 26000 − 35000 0.036 (12a)
3
Avinit
C/P
350
nanolayer (A recurrence
interval – 20 nm and equal
thickness of separate
nanolayers)
200 3⋅10−1 – 26000 − 35000 0.036 (12a)
III System-based coatings Ti-Al-N (TiN-AlN)
A.V. SAGALOVYCH, A.V. KONONYKHIN, V.V. POPOV, V.V. SAGALOVYCH
I Ti-N system-based coatings
II Mo-N system-based coatings
12
practically does not place it in another grade in
accordance with the classification by grade surface
roughness.
As the results of examination of the profile dia-
gram show, the quality of the coating surface essen-
tially deteriorates without application of a rectilinear
separator. A considerable quantity of macro parti-
cles (mainly, metal drops) characteristic for conden-
sation from unseparated streams of plasma, occurs
on the surface of coatings. Roughness of the origi-
nal surface (grade 12b) when depositing such coat-
ings decreases very strongly (grade 7c, tabl. 2).
When depositing coatings based on molybde-
num without application of separating devices the
coatings’ surface roughness corresponds to V 7 − 8
grade, if deposited on steel DIN 1.2379 (Х12Ф1)
surface polished to surface finish class V 12.
As one would expect, titanium-based coatings
have a somewhat higher roughness when compared
to coatings based on molybdenum, which is ac-
counted for by higher drop component and larger
sizes of drops in comparison with the plasma gen-
erated by the arc with molybdenum cathode [14].
The carried out X-ray examinations of Avinit
coatings C/P 320 revealed that coatings comprise
∼ 45 at.% of aluminum. Their crystal structure
matched TiN structure, with lattice parameter close
to values of this composition. According to the X-
ray examination, the size of the coherent-scattering
region (CSR) in the coating made 32 nm. This value
is well consistent with the sizes of separate TiN and
AlN nanolayers taking into account the nanolayer
growth rate per revolution, which made ∼ 35 nm,
that, as a whole, confirms availability of nanolayer
structure in accordance with the process flowsheet
of coating formation.
To determine coating thickness and for visual
estimation of quality of Ti-Al-N coating adhesion
with the material of the test parts, a metallophy-
sics measurement of Avinit coatings was made at
a raster-type electronic microscope JSM T-300
(fig. 5, 6).
For thickness gauging a traversal static fracture
of test parts having coatings was made. The thick-
ness of the coating makes ∼ 9 µm. No peeling of the
coating from the carrier was revealed at the exam-
ined sections.
Thickness of thick unfiltered multilayer Avinit
coatings C/P 100 and Avinit C/P 220 made 10 ÷
15 µm, microhardness of coatings − 2000 −
2500 kg/mm2. Thickness of thin multilayers and
nanolayers of Avinit coatings C/P 320 and Avinit
C/P 210 − 1 ÷ 2 µm. The measured values of hard-
ness of Avinit coatings C/P 320 made not less than
a)
b)
Fig. 4. Profile diagram of the carrier with a) Ti-TiN, b) Mo-
MoN. coatings.
a)
Point No. N Al Ti Mo Total %
010 9.10 27.93 62.96 – 100
011 6.89 16.73 76.38 – 100
012 10.7 45.87 43.44 – 100
013 10.71 47.22 42.07 – 100
014 – 3.64 88.94 7.41 100
×9500
b)
Fig. 5. Appearance of Avinit coating C/P 320 (a traversal
metallographic sample): a) with marked areas for analysis;
b) an approximate chemical composition of the analyzed
areas.
EXPERIMENTAL RESEARCH OF MULTICOMPONENT MULTILAYER ION-PLASMA AVINIT COATINGS
ФІП ФИП PSE, 2013, т. 11, № 1, vol. 11, No. 1
13ФІП ФИП PSE, 2013, т. 11, № 1, vol. 11, No. 1
HV = 3500 kg/mm2, Avinit coatings C/P 210 − not
less than HV = 2000 2500 kg/mm2.
The taken measurements of nanohardness and
Young modulus in 1.4 мm thick Avinit coatings C/P
320 gave the values of НV = 1600 – 2300 kg/mm2,
E = 250 − 300 GPa, a Poisson’s ratio K = 0.30
(diagrams of loading and the obtained nanohardness,
Young modulus and Poisson’s ratios values are pre-
sented in fig. 7а).
Similar measurements for Avinit coatings C/P
210 with the thickness 1.0 µm yielded the following
results − НV = 1500 – 1800 kg/mm2, E = 200 −
260 GPa, a Poisson’s ratio K = 0.30 (fig. 7b).
It should be noted that in Oliver-Pharr model
Young moduli of the coating and the carrier are as-
sumed to be equal, and thus the computed values
can be a little underrated.
The performed measurements of nanohardness
show that in thin layers of hard and superhard coat-
ings, where application of usual methods of testing
microhardness by means of microhardness gauge
PMT-3 is impossible (coating thickness for obtain-
ing of reliable information should be not less than
5 µm), as high values of hardness, as in thick layers
IMG15.0 µm ×5500
5.0 µm N K
5.0 µm Ti K
5.0 µm Al K
Fig. 6. Appearance of Avinit coating C/P 320 (a traversal
metallographic section) in the mode of mapping of the
coated section. The higher element content, the more in-
tensive coloring.
a)
b)
Fig. 7. Measurement results of nanohardness and Young
modulus: a) – Avinit coating C/P 320; b) – Avinit coating
C/P 210.
A.V. SAGALOVYCH, A.V. KONONYKHIN, V.V. POPOV, V.V. SAGALOVYCH
14
are attainable. This permits to state that many
technological developments made by the authors for
thick coatings, can be successfully applied to thin
coatings of precision surfaces.
Metallographic examination of Avinit coatings
using methods of secondary ion mass spectrometry
(SIMS), electron X-ray micro analyzing (EXRM),
raster electron microscopy (REM) were carried out.
Functional relationship of currents of secondary
ions Al+, Ti+ on the time of deposition and depths of
components’ distribution profile for Avinit coating
C/P 310 are presented in fig. 8а.
Changing of secondary ions current in both ex-
periments characterizes change of concentration of
respective elements deep into the sample in course
of deposition on the near-to-surface area by a beam
of primary ions Ar+. It follows from the obtained
dependencies that the top surface of the coating has
a higher concentration of aluminum, which decreas-
es with the depth. Further changes of current inten-
sity for Al+ and Ti+ reflect, in fact, the processes
which occur during coating deposition and lead to
change of concentration of respective components
due to the deposition mode. It is also possible that
the behavior of these relations can characterize the
change of chemical identity of aluminum and titanum
compounds in course of formation of coating thick-
ness.
Similar relations for profiles of aluminum and
titanum distribution in the near-to-surface area of
the sample with the deposited functional coating
Avinit C/P 320 are presented in fig. 8b. Synchro-
nous changes of Al+ and Ti+ current intensities from
∼ 1.8 µm depth are related to the technology of coat-
ing formation.
The carried out examination permitted to opti-
mize technological parameters of process of nano-
sized layer coatings deposition with higher (or
lower) concentration of aluminum in the near-to-sur-
face layers.
Metallographic examination of samples after dep-
osition of coatings of various composition show that
the developed modes have provided formation of
qualitative coatings. Hardness and microhardness
of the carrier material in the selected modes of coat-
ings deposition practically do not decrease in com-
parison with the original state. Coatings had good
adherence with the parent material. Pilling of coat-
ings during application of a net of scratches was not
observed.
Thus, the experimental findings confirm a possi-
bility of low-temperature deposition of very hard
Avinit С coatings based on nitrides of metals in the
modes providing good adhesion to the parent ma-
terial ((steel DIN 1.2379 (Х12Ф1) without reduc-
ing strength properties of the steel (< 200 °C) and
without decreasing surface finish class of the origi-
nal surface.
RESULTS OF TRIBOLOGICAL TESTS
Tribological tests (coating over coating) (under the
test pattern “cube-roller”) of multilayer and nano-
layer Avinit C/P 320 and Avinit C/P 510с coatings
using counterbodies with multilayer Avinit C/P 220
and Avinit C/P 100 coatings (TiN-Ti based) of 10
− 15 µm thickness which are deposited from unfil-
tered plasma flows with the subsequent additional
polishing. Results are presented in fig. 9.
a)
b)
Fig. 8. Functional relationship of currents of secondary
ions Al+, Ti+ on deposition time: a) Avinit coating C/P 310,
b) Avinit coating C/P 320.
EXPERIMENTAL RESEARCH OF MULTICOMPONENT MULTILAYER ION-PLASMA AVINIT COATINGS
ФІП ФИП PSE, 2013, т. 11, № 1, vol. 11, No. 1
15ФІП ФИП PSE, 2013, т. 11, № 1, vol. 11, No. 1
More detailed examination of samples during tri-
bological tests was carried out with application of
methods on examination of chemical identity of near-
to-surface areas of the functional coatings.
Fig. 10 represents results of electron X-ray mi-
croanalysis (EXRM) for three elements: aluminium,
iron and titanum for Avinit C/P 320 sample at its
scanning by an electronic beam along width of a
ring from its external surface to the internal one.
Results are represented in the form of depen-
dences of a characteristic X-radiation of atoms of
those metals from the electron microprobe location
on a surface of the sample (diameter of electron
microprobe ∅ = 30 nm, characteristic radiation
was registered from a near-to-surface layer of the
sample at 1 µm depth).
When scanning from larger to smaller diameter,
curves begin with peaks of the titanium and the alu-
minium intensities caused by characteristic radiation
of these metals deposited on an external cylindrical
part of the sample. Peak values of Al and Ti cha-
racteristic radiation with the same order intensities
are also observed on interfaces of side, internal and
external cylindrical surfaces of the ring. Al and Ti
distributions over all analyzed surface are qualita-
tively close to each other.
No matter the fact that unaffected functional coat-
ing exists, surfaces with such coating already exhibit
Fe characteristic radiation which intensity is much
less, than from Al and Ti. The form of dependence
of a signal on Fe is contrary to form of dependence
for Al and Ti. Observable regularity of distribution
of metals over a surface of the sample along an an-
alyzing line is illustratory. Minimums on distribution
curve Fe there match to all maximums on distribu-
tion curves for Al and Ti, and vice versa. At the same
time, Fe intensity is basic for a surface put to tribo-
logical tests. At that, rather wide transitive area (200
− 360 µm) is observed.
Sections of a surface of Avinit C/P 320 sample
put to tribological tests were examined by means of
a secondary ion mass spectrometry (SIMS).
Metallophysics measurements carried out pro-
vide fuller appreciation of dynamics of wearing pro-
cess over a thickness of a coating and more rea-
sonable approach to selection of technological pa-
rameters for deposition of nanolayer coatings with
various thickness.
Fig. 9. Dependence of friction coefficient on loading.
Fig. 10. Distribution of elements in coating Avinit C/P 320.
A.V. SAGALOVYCH, A.V. KONONYKHIN, V.V. POPOV, V.V. SAGALOVYCH
16
Analysis of results of tribological examinations
carried out shows, that presence of the developed
coatings essentially improves scoring resistance of
tribological pairs raising values Рcr of scoring and
practically preventing scoring.
Coatings on the basis of Avinit C/P 220 which
have the highest Рcr values and the lowest values of
coefficient of friction are especially effective. This is
evidenced by not only increase in load at tests to
maximum load, but also variation of dependence of
friction coefficients on a load which after some raise
with increase in load to 0,6 − 0,8 kN was down-
graded to the maximum load of 2 kN.
Application of multilayer coatings (for example,
Avinit C/P 110 of TiN-Ti type) leads to magnifica-
tion of Рcr in comparison with monolayer coatings
(for example, Avinit C/P 100 of TiN type).
For all types of coatings, friction coefficients have
close enough values, and at loadings more than
1.0 kN they are within the range of 0.06 – 0.1.
The least friction coefficient is for the pair “coating
Avinit C320 – coating Avinit C220”. Value of fric-
tion coefficient of the pairs did not exceed 0,095
within all range of loadings, and at the maximum load-
ing it made 0,065, that matches to the minimum val-
ue obtained in the study for friction pairs a with the
examined coatings.
All coatings in tests have shown high wear resis-
tance.
The friction pairs which working faces have mi-
cro- and nanolayer Avinit C/P 320, Avinit C/P 350,
Avinit C/P 220 coatings, were tested in the condi-
tions of a boundary lubrication, are characterized
by:
− High scoring resistance;
− Absence of secondary abradability;
− High enough stability over time of friction coeffi-
cient in case of operation on an invariable loading.
All tested friction pairs with nanocoatings have
pronounced running-in period of ≈ 60 min. after
which values of friction coefficients are stabilized
and, at an invariable loading 1600 N, are within limits
0,09 ÷ 0,132.
The friction pair Avinit C/P 220/Avinit C/P 320
has exhibited the most long runningin period before
stabilization of friction coefficients values at a steady
load in the study. This pair has exhibited the full co-
incidence of friction coefficients values of “direct”
and “reverse” pairs at the long-term operation un-
der an invariable loading. The mass wear revealed
after 8 hours of wear tests is less than for “base”
pair bronze/nitrided steel DIN 1.2379 (Х12Ф1)
(chosen as one of the best actual alternatives for
operation of friction pairs in an aviation fuel): 2.7
times less for “direct” pair and 8.1 times less for
“reverse” pair.
CONCLUSIONS
1. Metallographic examination of improved struc-
tures of multilayer Avinit C type nitride coat-
ings based on Ti-Al-N system − Avinit C/P 310,
Avinit C/P 300, Avinit C/P 100, Avinit C/P
320, Avinit C/P 350 and coatings based on
system Mo-N − Avinit C/P 210 and Avinit
C/P 220 were made. Avinit coatings are de-
posited on precision surfaces of high finish class
up to 12 − 13 grades without decrease in sur-
face finish class, which is attained by use of ef-
fective methods of surface cleaning in the pro-
duction engineering being developed, and by
prevention of surface deterioration by micro arcs.
For this purpose Avinit installation is equipped
with a three-level arc control system providing
high quality of surface cleaning from oxides and
other fouling without occurrence of electrical
breakdowns.
2. The experimental findings confirm a possibility
of low-temperature deposition of very hard
Avinit coatings С based on nitrides of metals in
the modes providing good adhesion to parent
material (steel DIN 1.2379 (Х12Ф1) without
decrease in strength properties of the steel
(< 200 °C) and without distortion of coated sur-
faces.
3. As tribological tests have shown, deposition of
coatings very effectively improves scoring re-
sistance leading to raise of value Рcr for scoring.
Examined pairs with coatings had low friction
coefficients at loadings up to 2.0 kN. Pair Avinit
EXPERIMENTAL RESEARCH OF MULTICOMPONENT MULTILAYER ION-PLASMA AVINIT COATINGS
ФІП ФИП PSE, 2013, т. 11, № 1, vol. 11, No. 1
Table 4
Values of wear of samples in the course of
wearing tests for 8 hours
Friction pair Avinit C/Р 220/Avinit C/Р 320
Avinit C/Р 220 Avinit C/Р 320
Wear, g
Test time
480 min
Σ
static movable 0.00091
0.00091 0
movable static 0.00101
0.00087 0.00014
17ФІП ФИП PSE, 2013, т. 11, № 1, vol. 11, No. 1
C/P 320/Avinit C/P 220 had the least friction
coefficient. Its value did not exceed 0.095 within
all range of loadings, and at the maximum load-
ing it made 0.075. During tests, all advanced
coatings have shown high wear resistance which
value did not exceed 0.8 µm. The pair Avinit
C/P 320/Avinit C/P 220 has shown the best
combination of wear hardness and tribological
properties. It had the least friction coefficient and
practically zero wear for 8 hour tests.
4. The carried out examination permitted to choose
temperature/time parameters of production of
hard surfacing Avinit С coatings to raise wear
resistance of working areas of precision friction
couples, which is necessary for development of
software products for production of such coat-
ings with preset composition using Avinit equip-
ment and trying out of stable production engi-
neering for deposition of functional multicom-
ponent multilayer coatings for potential use in
real parts of precision friction couples of serial
aircraft apparatuses.
REFERENCES
1. Veprek S., Reiprich S. Concept for the design of
novel super hard coatings//Thin Solid Films. −
1995. − Vol. 268. − P. 64-67.
2. Korotayev A.D., Moshkov V.Yu. et al. Nano-
structure and nanocomposite superhard coatings
//Physical mezomehanika.− 2005. − Vol. 8, № 5.
− P. 103-116.
3. Haurt R., Patscheider J. From alloying to nano-
composites - improved performance of hard coat-
ings //Advanced Engineering Materials. − 2000.
− Vol. 2, № 5. − P. 247-259.
4. Veprek S. The search for novel, superhard mate-
rials//J. Vac. Sci. Technol. − 1999. − A 17(5). −
Р. 2401-2420.
5. Musil J., Zeman P., Hruby H., Mayrhofer P.H.
ZrN/Cu nanocomposite film − a novel superhard
material//Surface and Coatings Technology. −
1999. − Vol. 120-121. − Р. 179-18.
6. Sam Zhang, Yongqing Fu, Hejun Du et. al. Mag-
netron deposition of nanocomposite (Ti, Cr)
CN/DLC coatings//Surface and Coatings Tech-
nology. − 2002. − Vol. 162. − P. 42-48.
7. Veprek S., Veprek-Heijman M., Karvankova P.,
Prochazka J Different approaches to superhard
coatings and nanocomposites//Thin Solid Films.
− 2005. − Vol. 476. − P. 1-29.
8. Lyubchenko A., Sagalovich A.V., Sagalovich V.,
et. al. Examination of friction and wear charac-
teristics of ionic-plasma coatings produced on
aluminum alloy//Physical surface engineering. −
2004. − Vol. 2, № 1-2. − P. 110-114.
9. Popov V.V., Sagalovych A.V., Dudnik S.F. et. al.
Development of multicomponent coatings for
improvement of wear resistance of friction cou-
ples surfaces in precision assemblies//Physical
surface engineering. − 2007. − Vol. 5, №3-4. −
P. 154-165.
10. Sagalovych A.V., Sagalovych V.V., Dudnik S.F.
Automated system of deposition of functional
nanosized coatings//Equipment and tools. − 2005.
− Vol. 12. − P. 2-3.
11. Sagalovych A.V., Kononykhin A.V., Popov V.V.
et. al. Avinit installation for deposition of multi-
layer functional coatings//Physical surface engi-
neering. − 2010. − Vol. 8. − P. 336-347.
12. Dudnik S.F., Sagalovych А.V., Sagalovych V.V.
et. al. Examination of friction and wear proper-
ties of the ion-plasma coatings obtained over an
aluminium alloy//Physical surface engineering. −
2004. − Vol. 2. − P. 110-114.
13. Valitov A.M., A. Shilov Thickness control instru-
ments and methods: Thickness control instru-
ments and methods. − L. − 1985. − P. 256.
14. Khoroshikh V.M., Holomeev M.G. Spatial distri-
bution of particle fluxes in a stationary low pres-
sure arc discharge//Physical surface engineer-
ing. − 2004. − Vol. 2, № 1-2. − P. 24-27.
15. Aksenov I.I., Belous V.A., Vasiliev V.V. et. al. A
rectilinear separator of carbonic plasma of a vac-
uum arc//Issues of atomic science and engineer-
ing. − 2002. − № 2. − P. 127-130.
A.V. SAGALOVYCH, A.V. KONONYKHIN, V.V. POPOV, V.V. SAGALOVYCH
|