The Law of Multiplication of Large Random Matrices Revisited

The paper deals with the eigenvalue distribution of the product of two n × n positive definite matrices $B_\tau, \ \tau=\pm 1$, rotated with respect to each other by the random orthogonal and Haar distributed matrix. The problem has been considered in several works by using various techniques. We pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2023
1. Verfasser: Pastur, Leonid
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України 2023
Schlagworte:
Online Zugang:https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1003
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Journal of Mathematical Physics, Analysis, Geometry

Institution

Journal of Mathematical Physics, Analysis, Geometry
Beschreibung
Zusammenfassung:The paper deals with the eigenvalue distribution of the product of two n × n positive definite matrices $B_\tau, \ \tau=\pm 1$, rotated with respect to each other by the random orthogonal and Haar distributed matrix. The problem has been considered in several works by using various techniques. We propose a streamlined approach based on the random matrix theory techniques and a certain symmetry of the problem. We prove the convergence with probability 1 as n tends to infinity of the Normalized Counting Measure (NCM) of eigenvalues of the product to a non-random limit, derive a functional equation that determines the Stieltjes transform of the limiting NCM of the product in terms of limiting NCMs of the factors $B_\tau, \ \tau=\pm 1$, and consider an interesting example. Mathematical Subject Classification 2020: 15B52, 34L20, 60B20