The Law of Multiplication of Large Random Matrices Revisited

The paper deals with the eigenvalue distribution of the product of two n × n positive definite matrices $B_\tau, \ \tau=\pm 1$, rotated with respect to each other by the random orthogonal and Haar distributed matrix. The problem has been considered in several works by using various techniques. We pr...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2023
Автор: Pastur, Leonid
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України 2023
Теми:
Онлайн доступ:https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1003
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Journal of Mathematical Physics, Analysis, Geometry

Репозитарії

Journal of Mathematical Physics, Analysis, Geometry
Опис
Резюме:The paper deals with the eigenvalue distribution of the product of two n × n positive definite matrices $B_\tau, \ \tau=\pm 1$, rotated with respect to each other by the random orthogonal and Haar distributed matrix. The problem has been considered in several works by using various techniques. We propose a streamlined approach based on the random matrix theory techniques and a certain symmetry of the problem. We prove the convergence with probability 1 as n tends to infinity of the Normalized Counting Measure (NCM) of eigenvalues of the product to a non-random limit, derive a functional equation that determines the Stieltjes transform of the limiting NCM of the product in terms of limiting NCMs of the factors $B_\tau, \ \tau=\pm 1$, and consider an interesting example. Mathematical Subject Classification 2020: 15B52, 34L20, 60B20