Fractal Transformation of Krein–Feller Operators

We consider a fractal transformed doubly reflected Brownian motion with state space being a Cantor-like set. By applying the theory of fractal transformations as developped by Barnsley, et al., together with an application of a generalised Taylor expression we show that its infinitesimal generator i...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2023
Автори: Menzel, Max, Freiberg, Uta
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України 2023
Теми:
Онлайн доступ:https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1017
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Journal of Mathematical Physics, Analysis, Geometry

Репозитарії

Journal of Mathematical Physics, Analysis, Geometry
Опис
Резюме:We consider a fractal transformed doubly reflected Brownian motion with state space being a Cantor-like set. By applying the theory of fractal transformations as developped by Barnsley, et al., together with an application of a generalised Taylor expression we show that its infinitesimal generator is given in terms of a second order measure geometric derivative $\frac{d}{d\mu}\frac{d}{d\mu}$ as introduced by Freiberg and Zähle. Furthermore we investigate its connection to the well known classical Krein-Feller operator $\frac{d}{d\mu}\frac{d}{dx}$ which is the generator of a so called “gap-diffusion”. Mathematical Subject Classification 2020: 26A24, 26A30, 28A25, 28A80, 47A05, 60J35, 60J60