Korobov’s Controllability Function as Motion Time: Extension of the Solution Set of the Synthesis Problem

An extension of the solution set of the finite-time stabilization problem by bounded feedback controls, which is also called the synthesis problem for the canonical system via Korobov's nonunique controllability function, is given. We consider the case when the value of the controllability func...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2023
1. Verfasser: Choque-Rivero, A. E.
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України 2023
Schlagworte:
Online Zugang:https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1021
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Journal of Mathematical Physics, Analysis, Geometry

Institution

Journal of Mathematical Physics, Analysis, Geometry
id oai:jmag.ilt.kharkiv.ua:article-1021
record_format ojs
spelling oai:jmag.ilt.kharkiv.ua:article-10212023-11-29T18:04:11Z Korobov’s Controllability Function as Motion Time: Extension of the Solution Set of the Synthesis Problem Korobov’s Controllability Function as Motion Time: Extension of the Solution Set of the Synthesis Problem Korobov’s Controllability Function as Motion Time: Extension of the Solution Set of the Synthesis Problem Choque-Rivero, A. E. проблема синтезу стабiлiзацiя за скiнченний час обмежене керування канонiчна система synthesis problem finite-time stabilization bounded control controllability function canonical system An extension of the solution set of the finite-time stabilization problem by bounded feedback controls, which is also called the synthesis problem for the canonical system via Korobov's nonunique controllability function, is given. We consider the case when the value of the controllability functions at the initial point is exactly the time of motion from the initial point to the origin. The family of positional controls resolving the synthesis problem is given in terms of a certain real parameter. We enlarge the interval of the parameters and explicitly compute its endpoints as functions of the dimension $n$ of the given system. Mathematical Subject Classification 2020: 93D15, 34D20, 34D05, 34H05. Знайдено розширення множини розв’язкiв проблеми стабiлiзацiї за скiнченний час за допомогою обмеженого позицiйного керування, яка також називається проблемою синтезу для канонiчної системи за допомогою функцiї керованостi Коробова. Ми розглядаємо випадок, коли значення функцiй керованостi в початковiй точцi є часом руху з цiєї початкової точки до нуля. У термiнах певних реальних параметрiв знайдено сiм’ю позицiйних керувань, що розв’язують проблему синтезу. Ми збiльшуємо iнтервал параметрiв i явно обчислюємо його кiнцевi точки як функцiї вiд розмiрностi $n$ системи, що розглядається. Mathematical Subject Classification 2020: 93D15, 34D20, 34D05, 34H05. Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України 2023-11-29 Article Article application/pdf https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1021 10.15407/mag19.03.556 Journal of Mathematical Physics, Analysis, Geometry; Vol. 19 No. 3 (2023); 556-586 Журнал математической физики, анализа, геометрии; Том 19 № 3 (2023); 556-586 Журнал математичної фізики, аналізу, геометрії; Том 19 № 3 (2023); 556-586 1817-5805 1812-9471 en https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1021/jm19-0556e Авторське право (c) 2023 Журнал математичної фізики, аналізу, геометрії
institution Journal of Mathematical Physics, Analysis, Geometry
baseUrl_str
datestamp_date 2023-11-29T18:04:11Z
collection OJS
language English
topic проблема синтезу
стабiлiзацiя за скiнченний час
обмежене керування
канонiчна система
spellingShingle проблема синтезу
стабiлiзацiя за скiнченний час
обмежене керування
канонiчна система
Choque-Rivero, A. E.
Korobov’s Controllability Function as Motion Time: Extension of the Solution Set of the Synthesis Problem
topic_facet проблема синтезу
стабiлiзацiя за скiнченний час
обмежене керування
канонiчна система
synthesis problem
finite-time stabilization
bounded control
controllability function
canonical system
format Article
author Choque-Rivero, A. E.
author_facet Choque-Rivero, A. E.
author_sort Choque-Rivero, A. E.
title Korobov’s Controllability Function as Motion Time: Extension of the Solution Set of the Synthesis Problem
title_short Korobov’s Controllability Function as Motion Time: Extension of the Solution Set of the Synthesis Problem
title_full Korobov’s Controllability Function as Motion Time: Extension of the Solution Set of the Synthesis Problem
title_fullStr Korobov’s Controllability Function as Motion Time: Extension of the Solution Set of the Synthesis Problem
title_full_unstemmed Korobov’s Controllability Function as Motion Time: Extension of the Solution Set of the Synthesis Problem
title_sort korobov’s controllability function as motion time: extension of the solution set of the synthesis problem
title_alt Korobov’s Controllability Function as Motion Time: Extension of the Solution Set of the Synthesis Problem
Korobov’s Controllability Function as Motion Time: Extension of the Solution Set of the Synthesis Problem
description An extension of the solution set of the finite-time stabilization problem by bounded feedback controls, which is also called the synthesis problem for the canonical system via Korobov's nonunique controllability function, is given. We consider the case when the value of the controllability functions at the initial point is exactly the time of motion from the initial point to the origin. The family of positional controls resolving the synthesis problem is given in terms of a certain real parameter. We enlarge the interval of the parameters and explicitly compute its endpoints as functions of the dimension $n$ of the given system. Mathematical Subject Classification 2020: 93D15, 34D20, 34D05, 34H05.
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України
publishDate 2023
url https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1021
work_keys_str_mv AT choqueriveroae korobovscontrollabilityfunctionasmotiontimeextensionofthesolutionsetofthesynthesisproblem
first_indexed 2025-09-26T01:40:38Z
last_indexed 2025-09-26T01:40:38Z
_version_ 1850836703997067264