Controllability Problems for the Heat Equation with Variable Coefficients on a Half-Axis Controlled by the Neumann Boundary Condition

In the paper, the problems of controllability and approximate controllability are studied for the control system $w_t=\frac{1}{\rho}\left(kw_x\right)_x+\gamma w$, $\left.\left(\sqrt{\frac{k}{\rho}}w_x\right)\right|_{x=0}=u$, $x>0$, $t\in(0,T)$, where $u$ is a control, $u\in L^\infty(0,T)$. It...

Full description

Saved in:
Bibliographic Details
Date:2023
Main Authors: Fardigola, Larissa, Khalina, Kateryna
Format: Article
Language:English
Published: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України 2023
Subjects:
Online Access:https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1024
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Journal of Mathematical Physics, Analysis, Geometry

Institution

Journal of Mathematical Physics, Analysis, Geometry
id oai:jmag.ilt.kharkiv.ua:article-1024
record_format ojs
spelling oai:jmag.ilt.kharkiv.ua:article-10242023-11-29T18:04:11Z Controllability Problems for the Heat Equation with Variable Coefficients on a Half-Axis Controlled by the Neumann Boundary Condition Controllability Problems for the Heat Equation with Variable Coefficients on a Half-Axis Controlled by the Neumann Boundary Condition Controllability Problems for the Heat Equation with Variable Coefficients on a Half-Axis Controlled by the Neumann Boundary Condition Fardigola, Larissa Khalina, Kateryna рiвняння теплопровiдностi керованiсть наближена керованiсть heat equation controllability approximate controllability In the paper, the problems of controllability and approximate controllability are studied for the control system $w_t=\frac{1}{\rho}\left(kw_x\right)_x+\gamma w$, $\left.\left(\sqrt{\frac{k}{\rho}}w_x\right)\right|_{x=0}=u$, $x>0$, $t\in(0,T)$, where $u$ is a control, $u\in L^\infty(0,T)$. It is proved that any initial state of the control system is not controllable to the origin except the zero initial state in a given time $T>0$. However, each initial state of the control system is approximately controllable to any target state in a given time $T>0$. Due to transformation operator generated by the equation data $\rho$, $k$, $\gamma$, the main results are obtained from their analogues obtained earlier in the case of constant coefficients ($\rho=k=1$, $\gamma=0$). Applying this operator is a focal point of the paper. The results are illustrated by examples. Mathematical Subject Classification 2020: 93B05, 35K05, 35B30. У роботi дослiджено проблеми керованостi та наближеної керованостi для керованої системи $w_t=\frac{1}{\rho}\left(kw_x\right)_x+\gamma w$, $\left.\left(\sqrt{\frac{k}{\rho}}w_x\right)\right|_{x=0}=u$, $x>0$, $t\in(0,T)$, де $u$ є керуванням, $u\in L^\infty(0,T)$. Доведено, що жодний початковий стан (крiм нульового) не може бути скерованим до нуля за заданий час $T>0$. Проте, кожний початковий стан керованої системи є наближено керованим у будь-який цiльовий стан за заданий час $T>0$. Завдяки оператору перетворення, породженому параметрами рiвняння $\rho$, $k$, $\gamma$, основнi результати роботи одержано з їх аналогiв для випадку сталих коефiцiєнтiв ($\rho=k=1$, $\gamma=0$). Застосування цього оператора є ключовим моментом роботи. Результати проiлюстровано прикладами. Mathematical Subject Classification 2020: 93B05, 35K05, 35B30. Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України 2023-11-29 Article Article application/pdf https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1024 10.15407/mag19.03.616 Journal of Mathematical Physics, Analysis, Geometry; Vol. 19 No. 3 (2023); 616-641 Журнал математической физики, анализа, геометрии; Том 19 № 3 (2023); 616-641 Журнал математичної фізики, аналізу, геометрії; Том 19 № 3 (2023); 616-641 1817-5805 1812-9471 en https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1024/jm19-0616e
institution Journal of Mathematical Physics, Analysis, Geometry
baseUrl_str
datestamp_date 2023-11-29T18:04:11Z
collection OJS
language English
topic рiвняння теплопровiдностi
керованiсть
наближена керованiсть
spellingShingle рiвняння теплопровiдностi
керованiсть
наближена керованiсть
Fardigola, Larissa
Khalina, Kateryna
Controllability Problems for the Heat Equation with Variable Coefficients on a Half-Axis Controlled by the Neumann Boundary Condition
topic_facet рiвняння теплопровiдностi
керованiсть
наближена керованiсть
heat equation
controllability
approximate controllability
format Article
author Fardigola, Larissa
Khalina, Kateryna
author_facet Fardigola, Larissa
Khalina, Kateryna
author_sort Fardigola, Larissa
title Controllability Problems for the Heat Equation with Variable Coefficients on a Half-Axis Controlled by the Neumann Boundary Condition
title_short Controllability Problems for the Heat Equation with Variable Coefficients on a Half-Axis Controlled by the Neumann Boundary Condition
title_full Controllability Problems for the Heat Equation with Variable Coefficients on a Half-Axis Controlled by the Neumann Boundary Condition
title_fullStr Controllability Problems for the Heat Equation with Variable Coefficients on a Half-Axis Controlled by the Neumann Boundary Condition
title_full_unstemmed Controllability Problems for the Heat Equation with Variable Coefficients on a Half-Axis Controlled by the Neumann Boundary Condition
title_sort controllability problems for the heat equation with variable coefficients on a half-axis controlled by the neumann boundary condition
title_alt Controllability Problems for the Heat Equation with Variable Coefficients on a Half-Axis Controlled by the Neumann Boundary Condition
Controllability Problems for the Heat Equation with Variable Coefficients on a Half-Axis Controlled by the Neumann Boundary Condition
description In the paper, the problems of controllability and approximate controllability are studied for the control system $w_t=\frac{1}{\rho}\left(kw_x\right)_x+\gamma w$, $\left.\left(\sqrt{\frac{k}{\rho}}w_x\right)\right|_{x=0}=u$, $x>0$, $t\in(0,T)$, where $u$ is a control, $u\in L^\infty(0,T)$. It is proved that any initial state of the control system is not controllable to the origin except the zero initial state in a given time $T>0$. However, each initial state of the control system is approximately controllable to any target state in a given time $T>0$. Due to transformation operator generated by the equation data $\rho$, $k$, $\gamma$, the main results are obtained from their analogues obtained earlier in the case of constant coefficients ($\rho=k=1$, $\gamma=0$). Applying this operator is a focal point of the paper. The results are illustrated by examples. Mathematical Subject Classification 2020: 93B05, 35K05, 35B30.
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України
publishDate 2023
url https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1024
work_keys_str_mv AT fardigolalarissa controllabilityproblemsfortheheatequationwithvariablecoefficientsonahalfaxiscontrolledbytheneumannboundarycondition
AT khalinakateryna controllabilityproblemsfortheheatequationwithvariablecoefficientsonahalfaxiscontrolledbytheneumannboundarycondition
first_indexed 2025-09-26T01:40:38Z
last_indexed 2025-09-26T01:40:38Z
_version_ 1850836704333660160