Radial Positive Solutions for Problems Involving φ-Laplacian Operators with Weights

Using the potential theory, we establish the existence and the asypmtotic behavior of radial solutions for the following boundaryvalue problem:\begin{equation*}\left\{\begin{aligned}&-\dfrac{1}{A}(A\phi(\mid u' \mid) u')'=a(t)u^\sigma & \mbox{on } (0,1),\\&A \p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2024
Hauptverfasser: Belkahla, Sywar, Khamessi, Bilel, Zine El Abidine, Zagharide
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України 2024
Schlagworte:
Online Zugang:https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1064
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Journal of Mathematical Physics, Analysis, Geometry

Institution

Journal of Mathematical Physics, Analysis, Geometry
Beschreibung
Zusammenfassung:Using the potential theory, we establish the existence and the asypmtotic behavior of radial solutions for the following boundaryvalue problem:\begin{equation*}\left\{\begin{aligned}&-\dfrac{1}{A}(A\phi(\mid u' \mid) u')'=a(t)u^\sigma & \mbox{on } (0,1),\\&A \phi(\mid u'\mid )u'(0)=0, \\&u(1)=0,\end{aligned}\right.\end{equation*}where $\sigma>0$, $A$ is a positive differentiable function on $(0,1)$ and the nonnegative function $\phi$ is continuously differentiable on $[0,\infty)$ such that for each $t>0$, $$ k_1 \le \dfrac{(t\phi(t))'}{\phi(t)} \le k_2, $$ where $k_1>0$ and $k_2>0$. The nonnegative nonlinearity $a$ is required to satisfy some appropriate assumptions related to the Karamata regular variation theory. We end this paper by giving applications. Mathematical Subject Classification 2020: 26A12, 34A34, 34B15, 34B18, 34B27