A Discrete Blaschke Theorem for Convex Polygons in 2-Dimensional Space Forms
Let $M$ be a $2$-dimensional space form. Let $P$ be a convex polygon in $M$. For these polygons, we define (and justify) a curvature $\kappa _i$ at each vertex $A_i$ of the polygon and prove the following Blaschke-type theorem: “If $P$ is a convex polygon in $M$ with curvature at its vertices $\kapp...
Saved in:
| Date: | 2024 |
|---|---|
| Main Authors: | Borisenko, Alexander, Miquel, Vicente |
| Format: | Article |
| Language: | English |
| Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України
2024
|
| Subjects: | |
| Online Access: | https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1067 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Journal of Mathematical Physics, Analysis, Geometry |
Institution
Journal of Mathematical Physics, Analysis, GeometrySimilar Items
-
Inscribed and Circumscribed Radius of κ-Convex Hypersurfaces in Hadamard Manifolds
by: Borisenko, Alexander, et al.
Published: (2024) -
F-functions for ellipses and convex polygons
by: T. A. Bardadym, et al.
Published: (2015) -
Novel View on Classical Convexity Theory
by: Milman, Vitali, et al.
Published: (2020) -
Flip graphs of coloured triangulations of convex polygons
by: Baur, Karin, et al.
Published: (2025) -
Convex Polygonal Hull for a Pair of Irregular Objects
by: V. M. Dubynskyi, et al.
Published: (2021)