Inscribed and Circumscribed Radius of κ-Convex Hypersurfaces in Hadamard Manifolds
Let $P$ be a convex polygon in a Hadamard surface $M$ with curvature $K$ satisfying $-k_2^2 \ge K \ge -k_1^2$. We give an upper bound of the circumradius of $P$ in terms of a lower bound of the curvature of $P$ at its vertices. Mathematical Subject Classification 2020: 52A40
Saved in:
| Date: | 2024 |
|---|---|
| Main Authors: | Borisenko, Alexander, Miquel, Vicente |
| Format: | Article |
| Language: | English |
| Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України
2024
|
| Subjects: | |
| Online Access: | https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1075 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Journal of Mathematical Physics, Analysis, Geometry |
Institution
Journal of Mathematical Physics, Analysis, GeometrySimilar Items
-
Rigidity of Closed Convex Hypersurfaces in Multidimensional Spaces of Constant Curvature
by: Borisenko, Alexander A.
Published: (2025) -
A Discrete Blaschke Theorem for Convex Polygons in 2-Dimensional Space Forms
by: Borisenko, Alexander, et al.
Published: (2024) -
On 2-Convex Non-Orientable Surfaces in Four-Dimensional Euclidean Space
by: Bolotov, Dmitry V.
Published: (2025) -
Quasiconformal Extensions and Inner Radius of Univalence by pre-Schwarzian Derivatives of Analytic and Harmonic Mappings
by: Hu, Zhenyong, et al.
Published: (2023) -
Novel View on Classical Convexity Theory
by: Milman, Vitali, et al.
Published: (2020)