On Gaussian Divisors of Characteristic Functions

We prove the following facts: 1) For every natural number $n\geq 3$ there are $n$ characteristic functions each of which does not have a Gaussian divisor, and the products of all proper subsets of the set of these characteristic functions also does not have a Gaussian divisor, but the product of all...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2024
Автор: Il’inskii, Alexandr
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України 2024
Теми:
Онлайн доступ:https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1088
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Journal of Mathematical Physics, Analysis, Geometry

Репозитарії

Journal of Mathematical Physics, Analysis, Geometry
Опис
Резюме:We prove the following facts: 1) For every natural number $n\geq 3$ there are $n$ characteristic functions each of which does not have a Gaussian divisor, and the products of all proper subsets of the set of these characteristic functions also does not have a Gaussian divisor, but the product of all of these characteristic functions has a Gaussian divisor; 2) Every non-degenerate distribution with bounded spectrum has rudiments of a Gaussian component in the following sense: for each such distribution there is a distribution without Gaussian component, whose convolution with the original one has a Gaussian component. We also indicate a wide class of functions on the real axis, which are the ratio of two characteristic functions. Mathematical Subject Classification 2020: 60E10, 42A38