On Kinds of Weak Solutions to an Initial Boundary Value Problem for 1D Linear Degenerate Wave Equation

In this article, we discuss the existence and uniqueness of mild, variational, and the so-called non-variational solutions to an initial-boundary value problem (IBVP) for linear wave equation with strong interior degeneracy of the coefficient in the principal part of the elliptic operator. The objec...

Full description

Saved in:
Bibliographic Details
Date:2025
Main Authors: Borsch, Vladimir, Kogut, Peter
Format: Article
Language:English
Published: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України 2025
Subjects:
Online Access:https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1090
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Journal of Mathematical Physics, Analysis, Geometry

Institution

Journal of Mathematical Physics, Analysis, Geometry
Description
Summary:In this article, we discuss the existence and uniqueness of mild, variational, and the so-called non-variational solutions to an initial-boundary value problem (IBVP) for linear wave equation with strong interior degeneracy of the coefficient in the principal part of the elliptic operator. The objective is to provide a well-posedness analysis of the IBVP and find out how the density property of smooth functions in the corresponding weighted Sobolev space affects the uniqueness of its solutions. We show that, in general, the uniqueness of solutions may be violated if the 'degree of degeneracy' corresponds to the strong degeneracy case. Mathematical Subject Classification 2020:35L80, 35D30