Controllability Problems for the Heat Equation on a Half-Plane Controlled by the Neumann Boundary Condition with a Point-Wise Control
In the paper, the problems of controllability and approximate controllability are studied for the control system $w_t=\Delta w$, $w_{x_1}(0,x_2,t)=u(t)\delta(x_2)$, $x_1>0$, $x_2\in\mathbb R$, $t\in(0,T)$, where $u\in L^\infty(0,T)$ is a control. To this aid, it is investigated the set $\math...
Збережено в:
| Дата: | 2025 |
|---|---|
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України
2025
|
| Теми: | |
| Онлайн доступ: | https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1092 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Journal of Mathematical Physics, Analysis, Geometry |
Репозитарії
Journal of Mathematical Physics, Analysis, Geometry| Резюме: | In the paper, the problems of controllability and approximate controllability are studied for the control system $w_t=\Delta w$, $w_{x_1}(0,x_2,t)=u(t)\delta(x_2)$, $x_1>0$, $x_2\in\mathbb R$, $t\in(0,T)$, where $u\in L^\infty(0,T)$ is a control. To this aid, it is investigated the set $\mathcal{R}_T(0)\subset L^2((0,+\infty)\times\mathbb R)$ of its end states which are reachable from 0. It is established that a function $f\in\mathcal{R}_T(0)$ can be represented in the form $f(x)=g\big(|x|^2\big)$ a.e. in $(0,+\infty)\times\mathbb R$ where $g\in L^2(0,+\infty)$. In fact, we reduce the problem dealing with functions from $L^2((0,+\infty)\times\mathbb R)$ to a problem dealing with functions from $L^2(0,+\infty)$. Both a necessary and sufficient condition for controllability and a sufficient condition for approximate controllability in a given time $T$ under a control $u$ bounded by a given constant are obtained in terms of solvability of a Markov power moment problem. Using the Laguerre functions (forming an orthonormal basis of $L^2(0,+\infty)$), necessary and sufficient conditions for approximate controllability and numerical solutions to the approximate controllability problem are obtained. It is also shown that there is no initial state that is null-controllable in a given time $T$. The results are illustrated by an example.
Mathematical Subject Classification 2020: 93B05, 35K05, 35B30 |
|---|