The L2-Norm of the Euler Class for Foliations on Closed Irreducible Riemannian 3-Manifolds

An upper bound for the $L^2$-norm of the Euler class $e(\cal F)$ of an arbitrary transversely orientable foliation $\cal F$ of codimension one, defined on a three-dimensional closed irreducible orientable Riemannian 3-manifold $M^3$, is given in terms of constants bounding the volume, the radius of...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2025
Автор: Bolotov, Dmitry V.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України 2025
Теми:
Онлайн доступ:https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1097
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Journal of Mathematical Physics, Analysis, Geometry

Репозитарії

Journal of Mathematical Physics, Analysis, Geometry
Опис
Резюме:An upper bound for the $L^2$-norm of the Euler class $e(\cal F)$ of an arbitrary transversely orientable foliation $\cal F$ of codimension one, defined on a three-dimensional closed irreducible orientable Riemannian 3-manifold $M^3$, is given in terms of constants bounding the volume, the radius of injectivity, the sectional curvature of $M^3$ and the modulus of mean curvature of the leaves. As a consequence, we get only finitely many cohomological classes of the group $H^2(M^3)$ that can be realized by the Euler class $e(\cal F)$ of a two-dimensional transversely oriented foliation $\cal F$ whose leaves have the modulus of mean curvature which is bounded above by the fixed constant $H_0$. Mathematical Subject Classification 2020: 53C12, 57R30, 53C20