The L2-Norm of the Euler Class for Foliations on Closed Irreducible Riemannian 3-Manifolds

An upper bound for the $L^2$-norm of the Euler class $e(\cal F)$ of an arbitrary transversely orientable foliation $\cal F$ of codimension one, defined on a three-dimensional closed irreducible orientable Riemannian 3-manifold $M^3$, is given in terms of constants bounding the volume, the radius of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2025
1. Verfasser: Bolotov, Dmitry V.
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України 2025
Schlagworte:
Online Zugang:https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1097
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Journal of Mathematical Physics, Analysis, Geometry

Institution

Journal of Mathematical Physics, Analysis, Geometry
Beschreibung
Zusammenfassung:An upper bound for the $L^2$-norm of the Euler class $e(\cal F)$ of an arbitrary transversely orientable foliation $\cal F$ of codimension one, defined on a three-dimensional closed irreducible orientable Riemannian 3-manifold $M^3$, is given in terms of constants bounding the volume, the radius of injectivity, the sectional curvature of $M^3$ and the modulus of mean curvature of the leaves. As a consequence, we get only finitely many cohomological classes of the group $H^2(M^3)$ that can be realized by the Euler class $e(\cal F)$ of a two-dimensional transversely oriented foliation $\cal F$ whose leaves have the modulus of mean curvature which is bounded above by the fixed constant $H_0$. Mathematical Subject Classification 2020: 53C12, 57R30, 53C20