Positive Solutions of a Nonlinear Elliptic Equation Involving a Singular Term

In this work, we study the existence and uniqueness of positive solutions to the equation $\Delta_p\, u=f(\vert x \vert)/u(x)$, $x\in \mathbb{R}^{N}$, where $N > p > 2$. More precisely, under certain assumptions concerning the function $f$, we provide an answer to the question of globa...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2025
Автори: Bouzelmate, Arij, Baghouri, Hikmat El, Sennouni, Fatima
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України 2025
Теми:
Онлайн доступ:https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1098
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Journal of Mathematical Physics, Analysis, Geometry

Репозитарії

Journal of Mathematical Physics, Analysis, Geometry
Опис
Резюме:In this work, we study the existence and uniqueness of positive solutions to the equation $\Delta_p\, u=f(\vert x \vert)/u(x)$, $x\in \mathbb{R}^{N}$, where $N > p > 2$. More precisely, under certain assumptions concerning the function $f$, we provide an answer to the question of global existence formulated in [14] by using the theory of invariant manifolds in dynamical systems and the energy method. In addition, we perform a detailed analysis of the asymptotic behavior of solutions by using logarithmic transformations. Mathematical Subject Classification 2020: 35A01, 35A02, 35B08, 35B09, 35B40, 35J60, 35J65