The Interaction of a Countable Number of Eddy Flows for the Bryan–Pidduck Model
We consider the nonlinear integro-differential Boltzmann equation for the model of rough spheres. An approximate solution is constructed in the form of a linear combination of a countable number of the Maxwell modes with certain coefficient functions that depend on time and spatial coordinate. Suffi...
Saved in:
| Date: | 2025 |
|---|---|
| Main Authors: | Gordevskyy, Vyacheslav, Hukalov, Oleksii |
| Format: | Article |
| Language: | English |
| Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України
2025
|
| Subjects: | |
| Online Access: | https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1101 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Journal of Mathematical Physics, Analysis, Geometry |
Institution
Journal of Mathematical Physics, Analysis, GeometrySimilar Items
-
The Interaction of the Maxwell Flows of General Form for the Bryan–Pidduck Model
by: O. O. Hukalov, et al.
Published: (2018) -
The Interaction of the Maxwell Flows of General Form for the Bryan-Pidduck Model
by: Hukalov, O.O., et al.
Published: (2018) -
Continual distribution for the Bryan – Pidduck equation
by: V. D. Hordevskyi, et al.
Published: (2020) -
Interaction between "Accelerating-Packing" Flows for the Bryan-Pidduck Model
by: Gukalov, A.A.
Published: (2013) -
The Interaction of an Infinite Number of Eddy Flows for the Hard Spheres Model
by: O. O. Hukalov, et al.
Published: (2021)