Existence of a Renormalized Solution for a Class of Parabolic Problems

In the paper, we prove the existence of the renormalized solution for the nonlinear degenerate parabolic equation $\frac{\partial b(u)}{\partial t}-\textrm{div}(A(t,x,u)Du)=f,$ where the matrix $A\left( t,x,s\right) =\left(a_{ij}(t,x,s)\right)_{1\leq i\leq N \atop 1\leq j\leq N}$ is not controlled w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2025
Hauptverfasser: El Fatry, Mohammed, Mekkour, Mounir, Akdim, Youssef
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України 2025
Schlagworte:
Online Zugang:https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1107
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Journal of Mathematical Physics, Analysis, Geometry

Institution

Journal of Mathematical Physics, Analysis, Geometry
Beschreibung
Zusammenfassung:In the paper, we prove the existence of the renormalized solution for the nonlinear degenerate parabolic equation $\frac{\partial b(u)}{\partial t}-\textrm{div}(A(t,x,u)Du)=f,$ where the matrix $A\left( t,x,s\right) =\left(a_{ij}(t,x,s)\right)_{1\leq i\leq N \atop 1\leq j\leq N}$ is not controlled with respect to $u$, $f\in L^{1}(Q) $, and $b$ is a strictly increasing $C^{1}$-function. Mathematical Subject Classification 2020: 47A15, 46A32