Existence of a Renormalized Solution for a Class of Parabolic Problems
In the paper, we prove the existence of the renormalized solution for the nonlinear degenerate parabolic equation $\frac{\partial b(u)}{\partial t}-\textrm{div}(A(t,x,u)Du)=f,$ where the matrix $A\left( t,x,s\right) =\left(a_{ij}(t,x,s)\right)_{1\leq i\leq N \atop 1\leq j\leq N}$ is not controlled w...
Saved in:
| Date: | 2025 |
|---|---|
| Main Authors: | , , |
| Format: | Article |
| Language: | English |
| Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України
2025
|
| Subjects: | |
| Online Access: | https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1107 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Journal of Mathematical Physics, Analysis, Geometry |
Institution
Journal of Mathematical Physics, Analysis, Geometry| Summary: | In the paper, we prove the existence of the renormalized solution for the nonlinear degenerate parabolic equation $\frac{\partial b(u)}{\partial t}-\textrm{div}(A(t,x,u)Du)=f,$ where the matrix $A\left( t,x,s\right) =\left(a_{ij}(t,x,s)\right)_{1\leq i\leq N \atop 1\leq j\leq N}$ is not controlled with respect to $u$, $f\in L^{1}(Q) $, and $b$ is a strictly increasing $C^{1}$-function.
Mathematical Subject Classification 2020: 47A15, 46A32 |
|---|