Nonlinear Partial Differential Equations in Module of Copolynomials over a Commutative Ring

Let $K$ be an arbitrary commutative integral domain with identity of characteristic 0. We study the copolynomials of $n$ variables, i.e., $K$-linear mappings from the ring of polynomials $K[x_1,\ldots,x_n]$ into $K$. We consider copolynomials as algebraic analogues of distributions. With the help of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2025
Hauptverfasser: Gefter, S. L., Piven’, A. L.
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України 2025
Schlagworte:
Online Zugang:https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1108
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Journal of Mathematical Physics, Analysis, Geometry

Institution

Journal of Mathematical Physics, Analysis, Geometry
Beschreibung
Zusammenfassung:Let $K$ be an arbitrary commutative integral domain with identity of characteristic 0. We study the copolynomials of $n$ variables, i.e., $K$-linear mappings from the ring of polynomials $K[x_1,\ldots,x_n]$ into $K$. We consider copolynomials as algebraic analogues of distributions. With the help of the Cauchy-Stieltjes transform of a copolynomial, we introduce and study a multiplication of copolynomials. We prove the existence and uniqueness theorem of the Cauchy problem for some nonlinear partial differential equations in the ring of formal power series with copolynomial coefficients. We study a connection between some classical nonlinear partial differential equations and integer sequences. In particular, for the Cauchy problem for the Burgers equation, we obtain the representation of the unique solution to this problem in the form of the series in powers of $\delta$-function with integer coefficients. Mathematical Subject Classification 2020: 35R50, 13B25, 35G20, 11Y55