Univalence Criterion and Quasiconformal Extensions of Analytic Mappings
In the present paper, we study the criterion for univalence and quasiconformal extensions for locally univalent analytic mappings and analytic mappings. For locally univalent analytic functions, we introduce integral operators in Loewner chain and obtain sufficient conditions for univalent and quasi...
Збережено в:
| Дата: | 2025 |
|---|---|
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України
2025
|
| Теми: | |
| Онлайн доступ: | https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1110 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Journal of Mathematical Physics, Analysis, Geometry |
Репозитарії
Journal of Mathematical Physics, Analysis, Geometry| Резюме: | In the present paper, we study the criterion for univalence and quasiconformal extensions for locally univalent analytic mappings and analytic mappings. For locally univalent analytic functions, we introduce integral operators in Loewner chain and obtain sufficient conditions for univalent and quasiconformal extensions to generalize the results of Becker, Ahlfors and Wang et al. For analytic functions, we use different proof methods to obtain a sufficient condition for univalence, which generalizes the result of Masih et al.
Mathematical Subject Classification 2020: 30C45, 30C55, 30C62 |
|---|