On 2-Convex Non-Orientable Surfaces in Four-Dimensional Euclidean Space

We prove that a 2-convex closed surface $S\subset E^4$ in the four-dimensional Euclidean space $E^4$, which is either $C^2$-smooth or polyhedral, provided that each vertex is incident to at most five edges, admits a mapping of degree one to a two-dimensional torus, where the degree is assumed to be$...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2025
1. Verfasser: Bolotov, Dmitry V.
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України 2025
Schlagworte:
Online Zugang:https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1113
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Journal of Mathematical Physics, Analysis, Geometry

Institution

Journal of Mathematical Physics, Analysis, Geometry
Beschreibung
Zusammenfassung:We prove that a 2-convex closed surface $S\subset E^4$ in the four-dimensional Euclidean space $E^4$, which is either $C^2$-smooth or polyhedral, provided that each vertex is incident to at most five edges, admits a mapping of degree one to a two-dimensional torus, where the degree is assumed to be$\mod 2$ if $S$ is non-orientable. As a corollary, we show that the projective plane and the Klein bottle do not admit such a 2-convex embedding in $E^4$. Mathematical Subject Classification 2020: 53A05, 57R19