Finding a Positive Constrained Control for a Linear System to Reach a Given Point within a Finite Time
In this paper, we consider a linear system with the control $u\in\Omega$, where $\Omega$ is a certain domain which does not contain the origin as an interior point. In particular, the origin may not belong to the set $\Omega$. The synthesis problem is solved, i.e. the control $u(x)\in \Omega$ which...
Збережено в:
| Дата: | 2025 |
|---|---|
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України
2025
|
| Теми: | |
| Онлайн доступ: | https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1115 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Journal of Mathematical Physics, Analysis, Geometry |
Репозитарії
Journal of Mathematical Physics, Analysis, Geometry| Резюме: | In this paper, we consider a linear system with the control $u\in\Omega$, where $\Omega$ is a certain domain which does not contain the origin as an interior point. In particular, the origin may not belong to the set $\Omega$. The synthesis problem is solved, i.e. the control $u(x)\in \Omega$ which transfers a point $x$ that belongs to a neighbourhood $V(0)$ to $0$ in a finite time is constructed by using the controllability function method. Moreover, this function can be found as the time of motion from a point $x \in V(0)$ to the origin. The case of the linear control system with a non-autonomous term is also considered.
Mathematical Subject Classification 2020: 93B05, 93B50, 93B52, 93C28,93D05, 93D40 |
|---|