Sub-Linear Growth of a Special Class of $C_0$-Groups on Dense Subsets

We consider a special class of linearly growing $C_0$-groups from [20,24], whose generators are essentially nonselfadjoint unbounded operators. More precisely, these generators have pure point imaginary spectrum, clustering at $ i\infty$, and corresponding dense and minimal, but not uniformly minima...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2025
Автори: Sklyar, Grigory, Marchenko, Vitalii, Polak, Piotr
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України 2025
Теми:
Онлайн доступ:https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1116
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Journal of Mathematical Physics, Analysis, Geometry

Репозитарії

Journal of Mathematical Physics, Analysis, Geometry
Опис
Резюме:We consider a special class of linearly growing $C_0$-groups from [20,24], whose generators are essentially nonselfadjoint unbounded operators. More precisely, these generators have pure point imaginary spectrum, clustering at $ i\infty$, and corresponding dense and minimal, but not uniformly minimal family of eigenvectors, hence this family do not form a Schauder basis. We obtain sharp two-sided estimates for the norms of $C_0$-groups from this class on dense subsets of a phase space, namely, on $D(A^k)$ for any $k\in\mathbb{N},$ where $A$ is the unbounded generator of the corresponding $C_0$-group. Thereby we prove that these $C_0$-groups have sub-linear growth on $D(A^k)$. This yields the sub-linear growth of classical and all more regular solutions of the Cauchy problems for the corresponding abstract linear evolution equations. Mathematical Subject Classification 2020: 47D06, 34G10, 46B45, 34K25