Sobolev’s Type Optimal Topology in the Problem of Exact Observability for Hilbert Space Dynamical Systems Connected with Riesz Basis of Divided Differences

This paper considers the problem of exact observability of a general class of linear distributed parameter systems in Hilbert spaces connected to Riesz basis properties of some families of exponential functions and the divided differences of those functions. Under some assumptions on asymptotic spec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2025
Hauptverfasser: Woźniak, Jarosław, Firkowski, Mateusz
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України 2025
Schlagworte:
Online Zugang:https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1118
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Journal of Mathematical Physics, Analysis, Geometry

Institution

Journal of Mathematical Physics, Analysis, Geometry
Beschreibung
Zusammenfassung:This paper considers the problem of exact observability of a general class of linear distributed parameter systems in Hilbert spaces connected to Riesz basis properties of some families of exponential functions and the divided differences of those functions. Under some assumptions on asymptotic spectral analysis of the differential operator of the system, the conditions of exact observability are stated in the form of exact observable spaces being the direct sum of some specific Sobolev spaces. The main result consists of proving the optimality of these subspaces of observable states. The result was based on advanced non-harmonic analysis approach connected to the unusual fact that time-space Riesz basis does not consist only of exponential functions but also contains divided differences of these functions. Mathematical Subject Classification 2020: 93B07, 35L40