An Estimation of the Length of a Convex Curve in Two-Dimensional Aleksandrov Spaces
In the paper, a generalization of the Toponogov theorem about the length of a curve in a two-dimensional Riemannian manifold is proved for the case of two-dimensional Aleksandrov spaces.Mathematics Subject Classification: 53C44, 52A40
Saved in:
| Date: | 2020 |
|---|---|
| Main Author: | Borisenko, Alexander A. |
| Format: | Article |
| Language: | English |
| Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України
2020
|
| Subjects: | |
| Online Access: | https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/jm16-0221e |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Journal of Mathematical Physics, Analysis, Geometry |
Institution
Journal of Mathematical Physics, Analysis, GeometrySimilar Items
-
An Estimation of the Length of a Convex Curve in Two-Dimensional Aleksandrov Spaces
by: A. A. Borisenko
Published: (2020) -
About Pogorelov's Method and
Aleksandrov's Estimates
by: Krylov, N. V.
Published: (2020) -
Rigidity of Closed Convex Hypersurfaces in Multidimensional Spaces of Constant Curvature
by: Borisenko, Alexander A.
Published: (2025) -
Novel View on Classical Convexity Theory
by: Milman, Vitali, et al.
Published: (2020) -
On 2-Convex Non-Orientable Surfaces in Four-Dimensional Euclidean Space
by: Bolotov, Dmitry V.
Published: (2025)