The space of Schwarz-Klein spherical triangles
We describe the space of spherical triangles (in the sense of Schwarz and Klein). It is a smooth connected orientable $3$ manifold, homotopy equivalent to the $1$-skeleton of the cubic partition of the closed first octant in $\mathbb{R}^3$. The angles and sides are real analytic functions on this ma...
Gespeichert in:
| Datum: | 2020 |
|---|---|
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України
2020
|
| Schlagworte: | |
| Online Zugang: | https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/jm16-0263e |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Journal of Mathematical Physics, Analysis, Geometry |
Institution
Journal of Mathematical Physics, Analysis, Geometry| Zusammenfassung: | We describe the space of spherical triangles (in the sense of Schwarz and Klein). It is a smooth connected orientable $3$ manifold, homotopy equivalent to the $1$-skeleton of the cubic partition of the closed first octant in $\mathbb{R}^3$. The angles and sides are
real analytic functions on this manifold which embed it to $\mathbb{R}^6$.
Mathematics Subject Classification: 51F99 |
|---|