The space of Schwarz-Klein spherical triangles
We describe the space of spherical triangles (in the sense of Schwarz and Klein). It is a smooth connected orientable $3$ manifold, homotopy equivalent to the $1$-skeleton of the cubic partition of the closed first octant in $\mathbb{R}^3$. The angles and sides are real analytic functions on this ma...
Saved in:
| Date: | 2020 |
|---|---|
| Main Authors: | Eremenko, Alexandre, Gabrielov, Andrei |
| Format: | Article |
| Language: | English |
| Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України
2020
|
| Subjects: | |
| Online Access: | https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/jm16-0263e |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Journal of Mathematical Physics, Analysis, Geometry |
Institution
Journal of Mathematical Physics, Analysis, GeometrySimilar Items
-
The space of Schwarz-Klein spherical triangles
by: A. Eremenko, et al.
Published: (2020) -
The Chazy XII Equation and Schwarz Triangle Functions
by: Bihun, O., et al.
Published: (2017) -
On Conformal Metrics of Constant Positive Curvature in the Plane
by: Bergweiler, Walter, et al.
Published: (2023) -
Quantum Klein Space and Superspace
by: Fioresi, R., et al.
Published: (2018) -
Spherical Quadrilaterals with Three Non-integer Angles
by: A. Eremenko, et al.
Published: (2016)