Novel View on Classical Convexity Theory
Let $B_{x}\subseteq\mathbb{R}^{n}$ denote the Euclidean ball with diameter $[0,x]$, i.e., with center at $\frac{x}{2}$ and radius $\frac{\left|x\right|}{2}$. We call such a ball a petal. A flower $F$ is any union of petals, i.e., $F=\bigcup_{x\in A}B_{x}$ for any set $A\subseteq\mathbb{R}^{n}$. We s...
Збережено в:
| Дата: | 2020 |
|---|---|
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України
2020
|
| Теми: | |
| Онлайн доступ: | https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/jm16-0291e |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Journal of Mathematical Physics, Analysis, Geometry |
Репозитарії
Journal of Mathematical Physics, Analysis, Geometry| Резюме: | Let $B_{x}\subseteq\mathbb{R}^{n}$ denote the Euclidean ball with diameter $[0,x]$, i.e., with center at $\frac{x}{2}$ and radius $\frac{\left|x\right|}{2}$. We call such a ball a petal. A flower $F$ is any union of petals, i.e., $F=\bigcup_{x\in A}B_{x}$ for any set $A\subseteq\mathbb{R}^{n}$. We showed earlier in [9] that the family of all flowers $\mathcal{F}$ is in 1-1 correspondence with $\mathcal{K}_{0}$ - the family of all convex bodies containing $0$. Actually, there are two essentially different such correspondences. We demonstrate a number of different non-linear constructions on $\mathcal{F}$ and $\mathcal{K}_{0}$. Towards this goal we further develop the theory of flowers.
Mathematics Subject Classification: 52A20, 52A30, 52A23 |
|---|