On the Cauchy - Riemann Geometry of Transversal Curves in the 3-Sphere
Let $\mathrm S^3$ be the unit sphere of $\mathbb C^2$ with its standard Cauchy--Riemann (CR) structure. This paper investigates the CR geometry of curves in $\mathrm S^3$ which are transversal to the contact distribution, using the local CR invariants of $\mathrm S^3$. More specifically, the focus i...
Збережено в:
| Дата: | 2020 |
|---|---|
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України
2020
|
| Теми: | |
| Онлайн доступ: | https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/jm16-0312e |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Journal of Mathematical Physics, Analysis, Geometry |
Репозитарії
Journal of Mathematical Physics, Analysis, Geometry| Резюме: | Let $\mathrm S^3$ be the unit sphere of $\mathbb C^2$ with its standard Cauchy--Riemann (CR)
structure. This paper investigates the CR geometry of curves in $\mathrm S^3$
which are transversal to the contact distribution, using the local CR invariants of $\mathrm S^3$.
More specifically, the focus is on the CR geometry of transversal knots.
Four global invariants of transversal knots are considered: the phase anomaly,
the CR spin, the Maslov index, and the CR self-linking number. The interplay between these invariants and the Bennequin number of a knot are discussed.
Next, the simplest CR invariant variational problem for generic transversal curves is considered and its closed critical curves are studied.Mathematics Subject Classification: 53C50, 53C42, 53A10 |
|---|